Large eddy simulation of turbulence‐driven secondary flow in a square duct

1991 ◽  
Vol 3 (11) ◽  
pp. 2734-2745 ◽  
Author(s):  
Ravi K. Madabhushi ◽  
S. P. Vanka
2011 ◽  
Vol 133 (2) ◽  
Author(s):  
Hassan Raiesi ◽  
Ugo Piomelli ◽  
Andrew Pollard

The performance of some commonly used eddy-viscosity turbulence models has been evaluated using direct numerical simulation (DNS) and large-eddy simulation (LES) data. Two configurations have been tested, a two-dimensional boundary layer undergoing pressure-driven separation, and a square duct. The DNS and LES were used to assess the k−ε, ζ−f, k−ω, and Spalart–Allmaras models. For the two-dimensional separated boundary layer, anisotropic effects are not significant and the eddy-viscosity assumption works well. However, the near-wall treatment used in k−ε models was found to have a critical effect on the predictive accuracy of the model (and, in particular, of separation and reattachment points). None of the wall treatments tested resulted in accurate prediction of the flow field. Better results were obtained with models that do not require special treatment in the inner layer (ζ−f, k−ω, and Spalart–Allmaras models). For the square duct calculation, only a nonlinear constitutive relation was found to be able to capture the secondary flow, giving results in agreement with the data. Linear models had significant error.


1994 ◽  
Vol 116 (4) ◽  
pp. 677-684 ◽  
Author(s):  
M. D. Su ◽  
R. Friedrich

Large eddy simulations have been performed in straight ducts with square cross section at a global Reynolds number of 49,000 in order to predict the complicated mean and instantaneous flow involving turbulence-driven secondary motion. Isotropic grid systems were used with spatial resolutions of 256 * 642. The secondary flow not only turned out to develop extremely slowly from its initial conditions but also to require fairly high resolution. The obtained statistical results are compared with measurements. These results show that the large eddy simulation (LES) is a powerful approach to simulate the complex turbulence flow with high Reynolds number. Streaklines of fluid particles in the duct show the secondary flow clearly. The database obtained with LES is used to examine a statistical turbulence model and describe the turbulent vortex structure in the fully developed turbulent flow in a straight duct.


2016 ◽  
Vol 26 (3/4) ◽  
pp. 1069-1091 ◽  
Author(s):  
Zhou Jiang ◽  
Zuoli Xiao ◽  
Yipeng Shi ◽  
Shiyi Chen

Purpose – The knowledge about the heat transfer and flow field in the ribbed internal passage is particularly important in industrial and engineering applications. The purpose of this paper is to identify and analyze the performance of the constrained large-eddy simulation (CLES) method in predicting the fully developed turbulent flow and heat transfer in a stationary periodic square duct with two-side ribbed walls. Design/methodology/approach – The rib height-to-duct hydraulic diameter ratio is 0.1 and the rib pitch-to-height ratio is 9. The bulk Reynolds number is set to 30,000, and the bulk Mach number of the flow is chosen as 0.1 in order to keep the flow almost incompressible. The CLES calculated results are thoroughly assessed in comparison with the detached-eddy simulation (DES) and traditional large-eddy simulation (LES) methods in the light of the experimentally measured data. Findings – It is manifested that the CLES approach can predict both aerodynamic and thermodynamic quantities more accurately than the DES and traditional LES methods. Originality/value – This is the first time for the CLES method to be applied to simulation of heat and fluid flow in this widely used geometry.


Author(s):  
Samer Abdel-Wahab ◽  
Danesh K. Tafti

Results from large eddy simulation (LES) of fully developed flow in a staggered 45° ribbed duct are presented with rib pitch-to-height ratio P/e = 10 and a rib height to hydraulic diameter ratio e/Dh = 0.1. The nominal Reynolds number based on bulk velocity is 47,300. Mean flow and turbulent quantities, together with heat transfer and friction augmentation results are presented. The flow is characterized by a helical vortex behind each rib and a complementary cross-sectional secondary flow, both of which result from the angle of the rib with respect to the mean flow. Averaged velocity profiles at the duct center show excellent agreement with experiments and heat transfer predictions agree well with experiments. Turbulent kinetic energy, shear stress, and heat transfer augmentation ratios show a strong correlation to the rib vortex and the secondary flow. Overall, heat transfer is augmented by a factor of 2.3 compared with a smooth duct and matches experimental data within 2%.


1991 ◽  
Vol 57 (540) ◽  
pp. 2530-2537 ◽  
Author(s):  
Takeo KAJISHIMA ◽  
Yutaka MIYAKE ◽  
Toshiyuki NISHIMOTO

Author(s):  
Aroon K. Viswanathan ◽  
Danesh K. Tafti

Results from Large Eddy Simulation (LES) of fully developed flow in a ribbed duct are presented with rib pitch-to-height ratio (P/e) is 10 and a rib height to hydraulic diameter ratio (e/Dh) is 0.1. Computations are carried out on a square duct with 45° ribs on the top and bottom walls arranged in a staggered fashion. The ribs have a rounded cross-section and are skewed at 45° to the main flow. The Reynolds number based on bulk velocity is 25,000. Mean flow and turbulent quantities, together with heat transfer and friction augmentation results are presented for a stationary case. The flow is characterized by a helical vortex behind each rib and a complementary cross-sectional secondary flow, both of which result from the angle of the rib with respect to the mean flow and result in a spanwise variation of the heat transfer. The mean flow, the turbulent quantities and the heat transfer in the duct show similar trends as in the duct with square cross-section ribs. However the results show that there is lesser friction in the ducts with rounded ribs. The overall heat transfer on the ribbed wall was augmented by 2.85 times that of a smooth duct, at the cost of friction which increases by a factor of 10. The computed values compare well with the experimental values.


Sign in / Sign up

Export Citation Format

Share Document