Nonaxisymmetric evanescent waves in a viscous liquid jet

1994 ◽  
Vol 6 (7) ◽  
pp. 2545-2547 ◽  
Author(s):  
S. P. Lin ◽  
R. Webb
1998 ◽  
Vol 8 (2) ◽  
pp. 155-178 ◽  
Author(s):  
J. H. Hilbing ◽  
Stephen D. Heister

Processes ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 918
Author(s):  
Li-Mei Guo ◽  
Ming Lü ◽  
Zhi Ning

Based on the linear stability analysis, a mathematical model for the stability of a viscous liquid jet in a coaxial twisting compressible airflow has been developed. It takes into account the twist and compressibility of the surrounding airflow, the viscosity of the liquid jet, and the cavitation bubbles within the liquid jet. Then, the effects of aerodynamics caused by the gas–liquid velocity difference on the jet stability are analyzed. The results show that under the airflow ejecting effect, the jet instability decreases first and then increases with the increase of the airflow axial velocity. When the gas–liquid velocity ratio A = 1, the jet is the most stable. When the gas–liquid velocity ratio A > 2, this is meaningful for the jet breakup compared with A = 0 (no air axial velocity). When the surrounding airflow swirls, the airflow rotation strength E will change the jet dominant mode. E has a stabilizing effect on the liquid jet under the axisymmetric mode, while E is conducive to jet instability under the asymmetry mode. The maximum disturbance growth rate of the liquid jet also decreases first and then increases with the increase of E. The liquid jet is the most stable when E = 0.65, and the jet starts to become more easier to breakup when E = 0.8425 compared with E = 0 (no swirling air). When the surrounding airflow twists (air moves in both axial and circumferential directions), given the axial velocity to change the circumferential velocity of the surrounding airflow, it is not conducive to the jet breakup, regardless of the axisymmetric disturbance or asymmetry disturbance.


2011 ◽  
Vol 66-68 ◽  
pp. 1556-1561 ◽  
Author(s):  
Kai Yan ◽  
Ming Lv ◽  
Zhi Ning ◽  
Yun Chao Song

A three-dimensional linear instability analysis was carried out for an annular swirling viscous liquid jet with solid vortex swirl velocity profile. An analytical form of dispersion relation was derived and then solved by a direct numerical procedure. A parametric study was performed to explore the instability mechanisms that affect the maximum spatial growth rate. It is observed that the liquid swirl enhances the breakup of liquid sheet. The surface tension stabilizes the jet in the low velocity regime. The aerodynamic force intensifies the developing of disturbance and makes the jet unstable. Liquid viscous force holds back the growing of disturbance and the makes the jet stable, especially in high liquid velocity regime.


PAMM ◽  
2016 ◽  
Vol 16 (1) ◽  
pp. 591-592
Author(s):  
Marie-Charlotte Renoult ◽  
Günter Brenn ◽  
Innocent Mutabazi

2003 ◽  
Vol 20 (4) ◽  
pp. 283-289 ◽  
Author(s):  
Madjid Birouk ◽  
Barry J. Azzopardi ◽  
Thomas Stäbler

2005 ◽  
Vol 71 (712) ◽  
pp. 3017-3024 ◽  
Author(s):  
Nobushige TAMAKI ◽  
Masanori SHIMIZU ◽  
Hiroyuki HIROYASU

Author(s):  
Günter Brenn ◽  
Marie-Charlotte Renoult ◽  
Innocent Mutabazi

Aweakly nonlinear stability analysis of an axisymmetric viscous liquid jet is performed. The calculation is based ona small-amplitude perturbation method and restricted to second order. Contrary to the inviscid jet and the planar viscous sheet cases studied by Yuen in 1968 [1] and Yang et al. in 2013 [2], respectively, a part of the solution results from a polynomial approximation of Bessel functions. Results on interface shapes for a small wave number and initial perturbation amplitude, four different Ohnesorge numbers, taking into account the approximate part or not, are used to predict the influence of liquid viscosity on satellite drop formation and evaluate the influence of the approximation. It is observed that the liquid viscosity has a retarding effect on satellite drop formation, in agreement with previous experimental and numerical work. In addition, it is found that the approximate terms can be reasonably ignored, providing a simpler viscous weakly nonlinear model for the description of the first nonlinearity growth in liquid jets.The present work replaces the ILASS 2016 paper [3] by the authors on the same subject.DOI: http://dx.doi.org/10.4995/ILASS2017.2017.4711


Sign in / Sign up

Export Citation Format

Share Document