The inverse diffusion time scale of velocity gradients in homogeneous isotropic turbulence

1997 ◽  
Vol 9 (4) ◽  
pp. 814-816 ◽  
Author(s):  
Jesus Martin ◽  
Andrew Ooi ◽  
Cesar Dopazo ◽  
M. S. Chong ◽  
Julio Soria
2020 ◽  
Author(s):  
Wojciech W. Grabowski ◽  
Lois Thomas

Abstract. Increase of the spectral width of initially monodisperse population of cloud droplets in homogeneous isotropic turbulence is investigated applying a finite-difference fluid flow model combined with either Eulerian bin microphysics or Lagrangian particle-based scheme. The turbulence is forced applying a variant of the so-called linear forcing method that maintains the mean turbulent kinetic energy (TKE) and the TKE partitioning between velocity components. The latter is important for maintaining the quasi-steady forcing of the supersaturation fluctuations that drive the increase of the spectral width. We apply a large computational domain, 643 m3, one of the domains considered in Thomas et al. (2020). The simulations apply 1 m grid length and are in the spirit of the implicit large eddy simulation (ILES), that is, with explicit small-scale dissipation provided by the model numerics. This is in contrast to the scaled-up direct numerical simulation (DNS) applied in Thomas et al. (2020). Two TKE intensities and three different droplet concentrations are considered. Analytic solutions derived in Sardina et al. (2015), valid for the case when the turbulence time scale is much larger than the droplet phase relaxation time scale, are used to guide the comparison between the two microphysics simulation techniques. The Lagrangian approach reproduces the scalings relatively well. Representing the spectral width increase in time is more challenging for the bin microphysics because appropriately high resolution in the bin space is needed. The bin width of 0.5 μm is only sufficient for the lowest droplet concentration, 26 cm−3. For the highest droplet concentration, 650 cm−3, even an order of magnitude smaller bin size is not sufficient. The scalings are not expected to be valid for the lowest droplet concentration and the high TKE case, and the two microphysics schemes represent similar departures. Finally, because the fluid flow is the same for all simulations featuring either low or high TKE, one can compare point-by-point simulation results. Such a comparison shows very close temperature and water vapor point-by-point values across the computational domain, and larger differences between simulated mean droplet radii and spectral width. The latter are explained by fundamental differences in the two simulation methodologies, numerical diffusion in the Eulerian bin approach and relatively small number of Lagrangian particles that are used in the particle-based microphysics.


2011 ◽  
Vol 666 ◽  
pp. 1-4 ◽  
Author(s):  
STUART B. DALZIEL

Turbulence is widely considered one of the most important and most difficult unsolved problems in classical physics. It is also the area of fluid mechanics where the greatest effort is exerted, the most papers published and, some would argue, the least progress made. Although direct numerical simulation is becoming an increasingly valuable tool, there remains a need for high-quality experiments to underpin our theoretical and numerical progress. Such statements apply equally to the ‘classical’ problem of homogeneous isotropic turbulence and to turbulence in its many other guises. Of particular interest is turbulence in a rotating system, where it is well known that the influence of rotation leads to the development of anisotropy and the elongation of scales parallel to the rotation axis. Moisy et al. (J. Fluid Mech., 2010, this issue, vol. 666, pp. 5–35) present new experiments in the free decay of grid-generated turbulence in a rotating system. They investigate the emergence of anisotropy from essentially isotropic initial conditions. While it is well known that rotation suppresses velocity gradients parallel to the rotation axis, Moisy et al. (2010) uncover some startling and previously overlooked implications.


1967 ◽  
Vol 28 (4) ◽  
pp. 803-821 ◽  
Author(s):  
T. Uzkan ◽  
W. C. Reynolds

A simple wall-turbulence interaction has been studied experimentally. In the idealized model an infinite flat plate is suddenly inserted into a pre-existing field of homogeneous isotropic turbulence, and subsequent changes in the turbulence field examined. The experiment involved passing grid-produced turbulence over a wall moving at the mean speed. Mean velocity gradients vanish in both the model and experiment, and hence production of new turbulence is absent. This allowed the inhibiting effects of the wall to be studied separately. The growth of the ‘inhomogeneity layer’ into the impressed turbulence field and other statistical features of the turbulence were measured.


2019 ◽  
Vol 4 (10) ◽  
Author(s):  
Mohamad Ibrahim Cheikh ◽  
James Chen ◽  
Mingjun Wei

1994 ◽  
Vol 6 (4) ◽  
pp. 1612-1614 ◽  
Author(s):  
Neal P. Sullivan ◽  
Shankar Mahalingam ◽  
Robert M. Kerr

Sign in / Sign up

Export Citation Format

Share Document