Linear stability and transient growth in driven contact lines

1997 ◽  
Vol 9 (3) ◽  
pp. 530-539 ◽  
Author(s):  
Andrea L. Bertozzi ◽  
Michael P. Brenner
1999 ◽  
Vol 11 (11) ◽  
pp. 3560-3562 ◽  
Author(s):  
L. Kondic ◽  
A. L. Bertozzi

2014 ◽  
Vol 742 ◽  
pp. 254-290 ◽  
Author(s):  
Simon Maretzke ◽  
Björn Hof ◽  
Marc Avila

AbstractNon-normal transient growth of disturbances is considered as an essential prerequisite for subcritical transition in shear flows, i.e. transition to turbulence despite linear stability of the laminar flow. In this work we present numerical and analytical computations of linear transient growth covering all linearly stable regimes of Taylor–Couette flow. Our numerical experiments reveal comparable energy amplifications in the different regimes. For high shear Reynolds numbers$\mathit{Re}$, the optimal transient energy growth always follows a$\mathit{Re}^{2/3}$scaling, which allows for large amplifications even in regimes where the presence of turbulence remains debated. In co-rotating Rayleigh-stable flows, the optimal perturbations become increasingly columnar in their structure, as the optimal axial wavenumber goes to zero. In this limit of axially invariant perturbations, we show that linear stability and transient growth are independent of the cylinder rotation ratio and we derive a universal$\mathit{Re}^{2/3}$scaling of optimal energy growth using Wentzel–Kramers–Brillouin theory. Based on this, a semi-empirical formula for the estimation of linear transient growth valid in all regimes is obtained.


2015 ◽  
Vol 770 ◽  
pp. 319-349 ◽  
Author(s):  
Mengqi Zhang ◽  
Fulvio Martinelli ◽  
Jian Wu ◽  
Peter J. Schmid ◽  
Maurizio Quadrio

We report the results of a complete modal and non-modal linear stability analysis of the electrohydrodynamic flow for the problem of electroconvection in the strong-injection region. Convective cells are formed by the Coulomb force in an insulating liquid residing between two plane electrodes subject to unipolar injection. Besides pure electroconvection, we also consider the case where a cross-flow is present, generated by a streamwise pressure gradient, in the form of a laminar Poiseuille flow. The effect of charge diffusion, often neglected in previous linear stability analyses, is included in the present study and a transient growth analysis, rarely considered in electrohydrodynamics, is carried out. In the case without cross-flow, a non-zero charge diffusion leads to a lower linear stability threshold and thus to a more unstable flow. The transient growth, though enhanced by increasing charge diffusion, remains small and hence cannot fully account for the discrepancy of the linear stability threshold between theoretical and experimental results. When a cross-flow is present, increasing the strength of the electric field in the high-$\mathit{Re}$Poiseuille flow yields a more unstable flow in both modal and non-modal stability analyses. Even though the energy analysis and the input–output analysis both indicate that the energy growth directly related to the electric field is small, the electric effect enhances the lift-up mechanism. The symmetry of channel flow with respect to the centreline is broken due to the additional electric field acting in the wall-normal direction. As a result, the centres of the streamwise rolls are shifted towards the injector electrode, and the optimal spanwise wavenumber achieving maximum transient energy growth increases with the strength of the electric field.


2017 ◽  
Vol 29 (2) ◽  
pp. 024105 ◽  
Author(s):  
Bijaylakshmi Saikia ◽  
Ashwin Ramachandran ◽  
Krishnendu Sinha ◽  
Rama Govindarajan

2005 ◽  
Vol 209 (1-4) ◽  
pp. 105-116 ◽  
Author(s):  
Roman O. Grigoriev

1994 ◽  
Vol 277 ◽  
pp. 197-225 ◽  
Author(s):  
Peter J. Schmid ◽  
Dan S. Henningson

Linear stability of incompressible flow in a circular pipe is considered. Use is made of a vector function formulation involving the radial velocity and radial vorticity only. Asymptotic as well as transient stability are investigated using eigenvalues and ε-pseudoeigenvalues, respectively. Energy stability is probed by establishing a link to the numerical range of the linear stability operator. Substantial transient growth followed by exponential decay has been found and parameter studies revealed that the maximum amplification of initial energy density is experienced by disturbances with no streamwise dependence and azimuthal wavenumber n = 1. It has also been found that the maximum in energy scales with the Reynolds number squared, as for other shear flows. The flow field of the optimal disturbance, exploiting the transient growth mechanism maximally, has been determined and followed in time. Optimal disturbances are in general characterized by a strong shear layer in the centre of the pipe and their overall structure has been found not to change significantly as time evolves. The presented linear transient growth mechanism which has its origin in the non-normality of the linearized Navier–Stokes operator, may provide a viable process for triggering finite-amplitude effects.


2010 ◽  
Vol 653 ◽  
pp. 1-33 ◽  
Author(s):  
SATHESH MARIAPPAN ◽  
R. I. SUJITH

An analytical framework is developed to understand and predict the thermoacoustic instability in solid rocket motors, taking into account the non-orthogonality of the eigenmodes of the unsteady coupled system. The coupled system comprises the dynamics of the acoustic field and the propellant burn rate. In general, thermoacoustic systems are non-normal leading to non-orthogonality of the eigenmodes. For such systems, the classical linear stability predicted from the eigenvalue analysis is valid in the asymptotic (large time) limit. However, the short-term dynamics can be completely different and a generalized stability theory is needed to predict the linear stability for all times. Non-normal systems show an initial transient growth for suitable initial perturbations even when the system is stable according to the classical linear stability theory. The terms contributing to the non-normality in the acoustic field and unsteady burn rate equations are identified. These terms, which were neglected in the earlier analyses, are incorporated in this analysis. Furthermore, the short-term dynamics are analysed using a system of differential equations that couples the acoustic field and the burn rate, rather than usingad hocresponse functions which were used in earlier analyses. In this paper, a solid rocket motor with homogeneous propellant grain has been analysed. Modelling the evolution of the unsteady burn rate using a differential equation increases the degrees of freedom of the thermoacoustic system. Hence, a new generalized disturbance energy is defined which measures the growth and decay of the oscillations. This disturbance energy includes both acoustic energy and unsteady energy in the propellant and is used to quantify the transient growth in the system. Nonlinearities in the system are incorporated by including second-order acoustics and a physics-based nonlinear unsteady burn rate model. Nonlinear instabilities are analysed with special attention given to ‘pulsed instability’. Pulsed instability is shown to occur with pressure coupling for burn rate response. Transient growth is shown to play an important role in pulsed instability.


2011 ◽  
Vol 670 ◽  
pp. 130-149 ◽  
Author(s):  
RAHUL KULKARNI ◽  
KOUSHIK BALASUBRAMANIAN ◽  
R. I. SUJITH

Non-normality can cause transient growth of perturbations in thermoacoustic systems with stable eigenvalues. This can cause low-amplitude perturbations to grow to amplitudes high enough to make nonlinear effects significant, and the system can become nonlinearly unstable, even though it is stable under classical linear stability. In this paper, we have demonstrated that this feature can lead to the failure of the traditional controllers that were designed on the basis of classical linear stability analysis. We have also shown in a simple model that it is possible to prevent ‘nonlinear driving’ by controlling transient growth, using linear controllers. The analysis is performed in the context of a horizontal Rijke tube.


Annals of PDE ◽  
2021 ◽  
Vol 7 (2) ◽  
Author(s):  
Paolo Antonelli ◽  
Michele Dolce ◽  
Pierangelo Marcati

AbstractIn this paper, we study the linear stability properties of perturbations around the homogeneous Couette flow for a 2D isentropic compressible fluid in the domain $$\mathbb {T}\times \mathbb {R}$$ T × R . In the inviscid case there is a generic Lyapunov type instability for the density and the irrotational component of the velocity field. More precisely, we prove that their $$L^2$$ L 2 norm grows as $$t^{1/2}$$ t 1 / 2 and this confirms previous observations in the physics literature. On the contrary, the solenoidal component of the velocity field experiences inviscid damping, namely it decays to zero even in the absence of viscosity. For a viscous compressible fluid, we show that the perturbations may have a transient growth of order $$\nu ^{-1/6}$$ ν - 1 / 6 (with $$\nu ^{-1}$$ ν - 1 being proportional to the Reynolds number) on a time-scale $$\nu ^{-1/3}$$ ν - 1 / 3 , after which it decays exponentially fast. This phenomenon is also called enhanced dissipation and our result appears to be the first to detect this mechanism for a compressible flow, where an exponential decay for the density is not a priori trivial given the absence of dissipation in the continuity equation.


Sign in / Sign up

Export Citation Format

Share Document