constricted channel
Recently Published Documents


TOTAL DOCUMENTS

57
(FIVE YEARS 13)

H-INDEX

11
(FIVE YEARS 2)

2022 ◽  
Vol 105 (1) ◽  
Author(s):  
Pascal Viot ◽  
Gregory Page ◽  
Chloé Barré ◽  
Julian Talbot

Energies ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2410
Author(s):  
Amjad Ali ◽  
Zainab Bukhari ◽  
Gullnaz Shahzadi ◽  
Zaheer Abbas ◽  
Muhammad Umar

Heat transfer analysis of the pulsatile flow of a hybrid nanofluid through a constricted channel under the impact of a magnetic field and thermal radiation is presented. Hybrid nanofluids form a new class of nanofluids, distinguished by the thermal properties and functional utilities for improving the heat transfer rate. The behaviors of a water-based copper nanofluid and water-based copper plus a single-wall carbon nanotube, i.e., (Cu–SWCNT/water), hybrid nanofluid over each of velocity, wall shear stress, and temperature profiles, are visualized graphically. The time-dependent governing equations of the incompressible fluid flow are transformed to the vorticity-stream function formulation and solved numerically using the finite difference method. The laminar flow simulations are carried out in 2D for simplicity as the flow profiles are assumed to vary only in the 2D plane represented by the 2D Cartesian geometry. The streamlines and vorticity contours are also shown to demonstrate the flow behviour along the channel. For comparison of the flow characteristics and heat transfer rate, the impacts of variations in Hartmann number, Strouhal number, Prandtl number, and the thermal radiation parameter are analyzed. The effects of the emerging parameters on the skin friction coefficient and Nusselt number are also examined. The hybrid nanofluid is demonstrated to have better thermal characteristics than the traditional one.


Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2173
Author(s):  
Muhammad Umar ◽  
Amjad Ali ◽  
Zainab Bukhari ◽  
Gullnaz Shahzadi ◽  
Arshad Saleem

This work aimed to analyze the heat transfer of micropolar fluid flow in a constricted channel influenced by thermal radiation and the Lorentz force. A finite difference-based flow solver, on a Cartesian grid, was used for the numerical solution after transforming the governing equations into the vorticity-stream function form. The impact of various emerging parameters on the wall shear stress, axial velocity, micro-rotation velocity and temperature profiles is discussed in this paper. The temperature profile is observed to have an inciting trend towards the thermal radiation, whereas it has a declining trend towards the Hartman and Prandtl numbers. The axial velocity profile has an inciting trend towards the Hartman number, whereas it has a declining trend towards the micropolar parameter and Reynolds number. The micro-rotation velocity escalates with the micropolar parameter and Hartman number, whereas it de-escalates with the Reynolds number. The Nusselt number is observed to have a direct relationship with the Prandtl and Reynolds numbers.


2021 ◽  
Vol 60 (5) ◽  
pp. 2278-2289
Author(s):  
Jose F. Roca ◽  
Ivan F. Menezes ◽  
Marcio S. Carvalho

Author(s):  
Denny Vitasari ◽  
Simon Cox ◽  
Paul Grassia ◽  
Ruben Rosario

The viscous froth model for two-dimensional (2D) dissipative foam rheology is combined with Marangoni-driven surfactant redistribution on a foam film. The model is used to study the flow of a 2D foam system consisting of one bubble partially filling a constricted channel and a single spanning film connecting it to the opposite channel wall. Gradients of surface tension arising from film deformation induce tangential flow that redistributes surfactant along the film. This redistribution, and the consequent changes in film tension, inhibit the structure from undergoing a foam-destroying topological change in which the spanning film leaves the bubble behind; foam stability is thereby increased. The system’s behaviour is categorized by a Gibbs–Marangoni parameter, representing the ratio between the rate of motion in tangential and normal directions. Larger values of the Gibbs–Marangoni parameter induce greater variation in surface tension, increase the rate of surfactant redistribution and reduce the likelihood of topological changes. An intermediate regime is, however, identified in which the Gibbs–Marangoni parameter is large enough to create a significant gradient of surface tension but is not great enough to smooth out the flow-induced redistribution of surfactant entirely, resulting in non-monotonic variation in the bubble height, and hence in foam stability.


2020 ◽  
Vol 24 (2 Part B) ◽  
pp. 1207-1216 ◽  
Author(s):  
Sufian Munawar ◽  
Najma Saleem

This paper is aimed to investigate the entropy generation in a MHD convective flow of Eyring-Powell fluid through a mildly constricted channel. The constriction is assumed to be of regular or irregular shape and is presented inside the channel wall. Mathematical model is developed using the basic laws of conservation of mass, momentum, and energy. The governing equations are normalized using appropriate set of dimensionless variables and solutions are obtained by regular perturbation technique. The solutions are further used to calculate the entropy expression associated with the Second law of thermodynamics. The heat transfer characteristics, like, temperature, isotherms, entropy generation number entropy lines and the Bejan number are analyzed for the variation in magnetic field, shape parameter, and material constants. It is observed that entropy production is maximum in the narrow part of the channel. Moreover, entropy generation rate is higher for the regular parabolic shape as compared to irregular shapes of constriction.


Sign in / Sign up

Export Citation Format

Share Document