thermoacoustic instabilities
Recently Published Documents


TOTAL DOCUMENTS

188
(FIVE YEARS 52)

H-INDEX

17
(FIVE YEARS 5)

Author(s):  
Fangyan Li ◽  
Xiaotao Tian ◽  
Ming-long Du ◽  
Lei Shi ◽  
Jiashan Cui

Abstract Thermoacoustic instabilities are commonly encountered in the development of aeroengines and rocket motors. Research on the fundamental mechanism of thermoacoustic instabilities is beneficial for the optimal design of these engine systems. In the present study, a thermoacoustic instability model based on the lean premixed gas turbines (LPGT) combustion system was established. The longitudinal distribution of heat release caused by the intrinsic instability of flame front is considered in this model. Effects of different heat release distributions and characteristics parameters of the premixed gas (Lewis number Le, Zeldovich Number and Prandtl number Pr) on thermoacoustic instability behaviors of the LPGT system are investigated based on this model. Results show that the LPGT system features with two kinds of unstable thermoacoustic modes. The first one corresponds to the natural acoustic mode of the plenum and the second one corresponds to that of the combustion chamber. The characteristic parameters of premixed gases have a large impact on the stability of the system and even can change the system from stable to unstable state.


2022 ◽  
Vol 933 ◽  
Author(s):  
Enrique Flores-Montoya ◽  
Victor Muntean ◽  
Mario Sánchez-Sanz ◽  
Daniel Martínez-Ruiz

This paper presents an experimental study of the influence of heat losses on the onset of thermoacoustic instabilities in methane–air premixed flames propagating in a horizontal tube of diameter, $D = 10$ mm. Flames are ignited at the open end of the tube and propagate towards the closed end undergoing strong oscillations of different features owing to the interaction with acoustic waves. The frequency of oscillation and its axial location are controlled through the tube length $L$ and the intensity of heat losses. These parameters are respectively modified in the experiments by a moveable piston and a circulating thermal bath of water prescribing temperature conditions. Main experimental observations show that classical one-dimensional predictions of the oscillation frequency do not accurately describe the phenomena under non-adiabatic real scenarios. In addition to the experimental measurements, a quasi-one-dimensional analysis of the burnt gases is provided, which introduces the effect of heat losses at the wall of the tube on the interplay between the acoustic field and the reaction sheet. As a result, this analysis provides an improved description of the interaction and accurately predicts the excited flame-oscillation harmonics through the eigenvalues of the non-adiabatic acoustics model. Unlike the original one-dimensional analysis, the comparison between the flame oscillation frequency provided by the non-adiabatic extended theory and the frequencies measured in our experiments is in excellent agreement in the whole range of temperatures considered. This confirms the importance of heat losses in the modulation of the instabilities and the transition between different flame oscillation regimes.


2021 ◽  
Vol 118 ◽  
pp. 107070
Author(s):  
Liangliang Xu ◽  
Guangyu Zhang ◽  
Guoqing Wang ◽  
Zhenzhen Feng ◽  
Xiaojing Tian ◽  
...  

2021 ◽  
pp. 1-11
Author(s):  
Thomas Govaert ◽  
Wolfgang Armbruster ◽  
Justin S. Hardi ◽  
Dmitry Suslov ◽  
Michael Oschwald ◽  
...  

2021 ◽  
Author(s):  
André Fischer ◽  
Claus Lahiri

Abstract Many modern low emission combustion systems suffer from thermoacoustic instabilities, which may lead to customer irritation (noise) or engine damages. The prediction of the frequency response of the flame is oftentimes not straightforward, so that it is common practice to measure the flame response in an experiment. The outcome of the measurement is typically a flame transfer-function (FTF), which can be used in low order acoustic network models to represent the flame. This paper applies an alternative criterion to evaluate the potential of the flame to become instable, the flame-amplification factor (FAF). It is based on an energy balance method and can be directly derived from the measured flame-transfer-matrix (FTM). In order to demonstrate this approach two different kerosene-driven aircraft fuel injectors were measured in the Rolls-Royce SCARLET rig in a single-sector RQL-combustor under realistic operating conditions. Here the multi-microphone method has been applied with acoustic forcing from up- and downstream side to determine the FTM. In contrast to the FTF-approach the full FTM data has been post-processed to derive the FAF. The FAF is then successfully used to rank the fuel injectors regarding their low frequency thermo-acoustic behaviour, because it is proportional to amplitudes of self-excited frequencies in FANN-rig (full annular) configuration.


2021 ◽  
Author(s):  
David Abbot ◽  
Alessandro Giannotta ◽  
Xiaoxiao Sun ◽  
Pierre Gauthier ◽  
Vishal Sethi

Abstract Hydrogen micromix is a candidate combustion technology for hydrogen aviation gas turbines. The introduction and development of new combustion technologies always carries the risk of suffering from damaging high amplitude thermoacoustic pressure oscillations. This was a particular problem with the introduction of lean premixed combustion systems to land based power generation gas turbines. There is limited published information on the thermoacoustic behaviour of such hydrogen micromix combustors. Diffusion flames are less prone to flashback and autoignition problems than premixed flames and conventional diffusion flames are less prone to combustion dynamics issues. However, with the high laminar flame speed of hydrogen, lean fuel air ratio (FAR) and very compact flames, the risk of combustion dynamics for micromix flames should not be neglected and a comparison of the likely thermoacoustic behaviour of micromix combustors and kerosene fueled aviation combustors would inform the early stage design of engine realistic micromix combustors. This study develops a micromix combustor concept suitable for a modern three spool, high bypass ratio engine and derives the acoustic Flame Transfer Function (FTF) at typical engine operating conditions for top of climb, take-off, cruise, and end of runway. The FTF is derived using CFD and FTF models based on a characteristic flame delay. The relative thermoacoustic behaviour for the four conditions is assessed using a low order acoustic network code. The comparisons suggest that the risk of thermoacoustic instabilities associated with longitudinal waves at low frequencies (below 1kHz) is small, but that higher frequency longitudinal modes could be excited. The sensitivity of the combustor thermoacoustic behaviour to key combustor dimensions and characteristic time delay is also investigated and suggests that higher frequency longitudinal modes can be significantly influenced by combustion system design. The characteristic time delay and thus FTF for a Lean Premixed Prevapourised (LPP) kerosene combustor is derived from information in the literature and the thermoacoustic behaviour of the micromix combustor relative to that of this kerosene combustor is determined using the same low order modelling approach. The comparison suggests that the micromix combustor is much less likely to produce thermoacoustic instabilities at low frequencies (below 1kHz), than the LPP combustor even though the risk in the LPP combustor is small. It is encouraging that this simple approach used in a preliminary design suggests that the micromix combustor has lower risk at low frequency than a kerosene combustor and that the risk of higher frequency longitudinal modes can be reduced by appropriate combustion system design. However, more detailed design, more rigorous thermoacoustic analysis and experimental validation are needed to confirm this.


Sign in / Sign up

Export Citation Format

Share Document