Surface-wave–particle interactions in a cylindrical plasma submitted to a static magnetic field

1997 ◽  
Vol 4 (12) ◽  
pp. 4195-4200 ◽  
Author(s):  
A. Dengra
2021 ◽  
Vol 2103 (1) ◽  
pp. 012233
Author(s):  
I V Volodin ◽  
A A Alabuzhev

Abstract In the present paper a dynamics of a thin ferrofluid film under the vertical vibration in a static magnetic field is examined. The vibrational amplitude is assumed to be greater than film thickness so that vibrational force is greater than magnetic and gravitational forces. The pulsating part and the averaged part of the hydrodynamics fields are obtained. The solution of pulsating part for the traveling surface wave is found. The equation for the averaged surface profile is found.


1992 ◽  
Vol 47 (3) ◽  
pp. 389-399 ◽  
Author(s):  
A. Dengra ◽  
J. Ballesteros

A new theoretical model to study surface wave–particle interaction in a cylindrical plasma has been developed. This model is based on linear resolution of the Vlasov equation, with the specular reflection hypothesis. Expressions for the breakdown time of the linear solution and for the rate of increase of kinetic energy per electron, as a function of the critical parameters, have been obtained.


1999 ◽  
Vol 6 (3/4) ◽  
pp. 149-160 ◽  
Author(s):  
E. Marsch

Abstract. In this paper we establish links between turbulence dissipation and wave-particle interactions in the solar corona and wind. Based on quasilinear theory, a set of anisotropic, multi-component fluid equations is derived, which describe the wave-particle interactions of ions with Alfvén waves and ion-cyclotron waves or magnetosonic waves propagating along the mean magnetic field. The associated equations for the wave spectrum and the heating and acceleration of the ions are derived. In fast solar wind streams heavy ions have about equal thermal speeds as the protons and flow faster than them. In order to explain the observed relations, Tj / Tp ≈ mj /mp and Uj Up ≈ VA, a numerical fluid-type model is developed, which takes into account the relevant wave-particle interactions. It is shown that left- and right-handed polarized waves propagating away from the Sun parallel to the interplanetary magnetic field can resonantly heat and accelerate minor ions preferentially with respect to the protons in close agreement with the measured characteristics of ion velocity distributions. Finally, some results from a simple analytical model are discussed.


1973 ◽  
Vol 10 (3) ◽  
pp. 359-369 ◽  
Author(s):  
V. V. Demchenko ◽  
N. M. El-Siragy ◽  
A. M. Hussein

The propagation of slow surface waves in an inhomogeneous plasma is investigated. Both ‘axial’ and ‘radial’ density gradients n(r) and those of the static magnetic field B0 are taken into account. It is demonstrated that the axial in- homogeneities n(z) and B0(z) result in the dependence of the natural surface- wave frequencies on the ‘axial’ co-ordinate z. The dependence ωSW(z) affects the phase velocity νph = ωswsol;K where K iS the propagation constant. So, in the case of surface-wave excitation by a charged particle beam in an ‘axially’ inhomogeneous plasma, the Cherenkov resonance ωSW= KV0 between the beam and the surface waves breaks, thereby reducing the growth rate of unstable oscillations. This phenomenon might be considered as the stabilization of the beam by the ‘axial’ density gradient. It is also shown that the ‘radial’ gradients n0(r) and B0(r) essentially affect the surface-wave natural frequencies as well. Dispersion equations, expressions for the natural frequencies and growth rates are obtaind, taking into account the gradients of the density and the static magnetic field.


2004 ◽  
Vol 91 (1) ◽  
pp. 59-65 ◽  
Author(s):  
S Sipka ◽  
I Szöllősi ◽  
Gy Batta ◽  
Gy Szegedi ◽  
Á Illés ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document