scholarly journals Ground surface deformation monitoring of an active volcano using the DInSAR technique in comparison with GPS data: Case study of Okmok Volcano, Alaska

2020 ◽  
Author(s):  
Dariusz Głąbicki
2014 ◽  
Vol 75 (1) ◽  
pp. 13-31 ◽  
Author(s):  
Guangcheng Zhang ◽  
Ni Xie ◽  
Huiming Tang ◽  
Lu Zhang ◽  
Jiangpeng Wu

Author(s):  
J. Pacheco-Martínez ◽  
S. Wdowinski ◽  
E. Cabral-Cano ◽  
M. Hernández-Marín ◽  
J. A. Ortiz-Lozano ◽  
...  

Abstract. Interferometric Synthetic Aperture Radar (InSAR) has become a valuable tool for surface deformation monitoring, including land subsidence associated with groundwater extraction. Another useful tools for studying Earth's surface processes are geophysical methods such as Gravimetry. In this work we present the application of InSAR analysis and gravimetric surveying to generate valuable information for risk management related to land subsidence and surface faulting. Subsidence of the city of Aguascalientes, Mexico is presented as study case. Aguascalientes local governments have addressed land subsidence issues by including new requirements for new constructions projects in the State Urban Construction Code. Nevertheless, the resulting zoning proposed in the code is still subjective and not clearly defined. Our work based on gravimetric and InSAR surveys is aimed for improving the subsidence hazard zoning proposed in the State Urban Code in a more comprehensive way. The study includes a 2007–2011 ALOS InSAR time-series analysis of the Aguascalientes valley, an interpretation of the compete Bouguer gravimetric anomaly of the Aguascalientes urban area, and the application of time series and gravimetric anomaly maps for improve the subsidence hazard zoning of Aguascalientes City.


Author(s):  
Y. F. He ◽  
W. Zhu ◽  
Q. Zhang ◽  
W. T. Zhang

InSAR technique can measure the surface deformation with the accuracy of centimeter-level or even millimeter and therefore has been widely used in the deformation monitoring associated with earthquakes, volcanoes, and other geologic process. However, ionospheric irregularities can lead to the wavy fringes in the low frequency SAR interferograms, which disturb the actual information of geophysical processes and thus put severe limitations on ground deformations measurements. In this paper, an application of two common methods, the range split-spectrum and azimuth offset methods are exploited to estimate the contributions of the ionosphere, with the aim to correct ionospheric effects in interferograms. Based on the theoretical analysis and experiment, a performance analysis is conducted to evaluate the efficiency of these two methods. The result indicates that both methods can mitigate the ionospheric effect in SAR interferograms and the range split-spectrum method is more precise than the other one. However, it is also found that the range split-spectrum is easily contaminated by the noise, and the achievable accuracy of the azimuth offset method is limited by the ambiguous integral constant, especially with the strong azimuth variations induced by the ionosphere disturbance.


Geosciences ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 285
Author(s):  
Rasha Amer ◽  
Ziqiu Xue ◽  
Tsutomu Hashimoto ◽  
Takeya Nagata

In recent years, distributed fiber optic strain sensing (DFOSS) technology has demonstrated a solution for continuous deformation monitoring from subsurface to surface along the wellbore. In this study, we installed a single-mode optical fiber cable in a shallow trench to establish an effective technique for ground surface deformation mapping. We conducted three experimental field tests (iron plate load, water tank filling up load, and airbag inflation) in order to confirm the strain sensitivity of DFOSS for static loads, dynamic overload, excavation, subsidence, and uplift. This paper also presents two installation methods to couple the fiber cable with the ground under various environmental conditions; here, the fiber cable was installed in a shallow trench with one part buried in the soil and another part covered with cement. Our results suggest that covering the cable with cement is a practical approach for installing a fiber cable for ground surface deformation monitoring. By combining this approach with wellbore DFOSS, accurate surface–subsurface deformation measurements can be obtained for three-dimensional geomechanical monitoring of CO2 storage and oil and gas fields in the future.


Sign in / Sign up

Export Citation Format

Share Document