scholarly journals Application of InSAR and gravimetric surveys for developing construction codes in zones of land subsidence induced by groundwater extraction: case study of Aguascalientes, Mexico

Author(s):  
J. Pacheco-Martínez ◽  
S. Wdowinski ◽  
E. Cabral-Cano ◽  
M. Hernández-Marín ◽  
J. A. Ortiz-Lozano ◽  
...  

Abstract. Interferometric Synthetic Aperture Radar (InSAR) has become a valuable tool for surface deformation monitoring, including land subsidence associated with groundwater extraction. Another useful tools for studying Earth's surface processes are geophysical methods such as Gravimetry. In this work we present the application of InSAR analysis and gravimetric surveying to generate valuable information for risk management related to land subsidence and surface faulting. Subsidence of the city of Aguascalientes, Mexico is presented as study case. Aguascalientes local governments have addressed land subsidence issues by including new requirements for new constructions projects in the State Urban Construction Code. Nevertheless, the resulting zoning proposed in the code is still subjective and not clearly defined. Our work based on gravimetric and InSAR surveys is aimed for improving the subsidence hazard zoning proposed in the State Urban Code in a more comprehensive way. The study includes a 2007–2011 ALOS InSAR time-series analysis of the Aguascalientes valley, an interpretation of the compete Bouguer gravimetric anomaly of the Aguascalientes urban area, and the application of time series and gravimetric anomaly maps for improve the subsidence hazard zoning of Aguascalientes City.

2019 ◽  
Vol 11 (23) ◽  
pp. 2854 ◽  
Author(s):  
Baohang Wang ◽  
Chaoying Zhao ◽  
Qin Zhang ◽  
Mimi Peng

Interferometric synthetic aperture radar (InSAR) time series deformation monitoring plays an important role in revealing historical displacement of the Earth’s surface. Xi’an, China, has suffered from severe land subsidence along with ground fissure development since the 1960s, which has threatened and will continue to threaten the stability of urban artificial constructions. In addition, some local areas in Xi’an suffered from uplifting for some specific period. Time series deformation derived from multi-temporal InSAR techniques makes it possible to obtain the temporal evolution of land subsidence and rebound in Xi’an. In this paper, we used the sequential InSAR time series estimation method to map the ground subsidence and rebound in Xi’an with Sentinel-1A data during 2015 to 2019, allowing estimation of surface deformation dynamically and quickly. From 20 June 2015 to 17 July 2019, two areas subsided continuously (Sanyaocun-Fengqiyuan and Qujiang New District), while Xi’an City Wall area uplifted with a maximum deformation rate of 12 mm/year. Furthermore, Yuhuazhai subsided from 20 June 2015 to 14 October 2018, and rebound occurred from 14 October 2018 to 17 July 2019, which can be explained as the response to artificial water injection. In the process of artificial water injection, the rebound pattern can be further divided into immediate elastic recovery deformation and time-dependent visco-elastic recovery deformation.


2021 ◽  
Vol 11 (4) ◽  
pp. 143
Author(s):  
Viera Papcunová ◽  
Roman Vavrek ◽  
Marek Dvořák

Local governments in the Slovak Republic are important in public administration and form an important part of the public sector, as they provide various public services. Until 1990, all public services were provided only by the state. The reform of public administration began in 1990 with the decentralization of competencies. Several competencies were transferred to local governments from the state, and thus municipalities began to provide public services that the state previously provided. Registry offices were the first to be acquired by local governments from the state. This study aimed to characterize the transfer of competencies and their financing from state administration to local government using the example of registry offices in the Slovak Republic. In the paper, we evaluated the financing of this competency from 2007 to 2018 at the level of individual regions of the Slovak Republic. The results of the analysis and testing of hypotheses indicated that a higher number of inhabitants in individual regions did not affect the number of actions at these offices, despite the fact that the main role of the registry office is to keep registry books, in which events, such as births, weddings, and deaths, are registered.


2020 ◽  
Vol 12 (13) ◽  
pp. 2125
Author(s):  
Li Duan ◽  
Huili Gong ◽  
Beibei Chen ◽  
Chaofan Zhou ◽  
Kunchao Lei ◽  
...  

Land subsidence threatens the stable operation of urban rail transit, including subways. Obtaining deformation information during the entire life-cycle of a subway becomes a necessary means to guarantee urban safety. Restricted by sensor life and cost, the single-sensor Multi-temporal Interferometric Synthetic Aperture Radar (MTI) technology has been unable to meet the needs of long-term sequence, high-resolution deformation monitoring, especially of linear objects. The multi-sensor MTI time-series fusion (MMTI-TSF) techniques has been proposed to solve this problem, but rarely mentioned. In this paper, an improved MMTI-TSF is systematically explained and its limitations are discussed. Taking the Beijing Subway Network (BSN) as a case study, through cross-validation and timing verification, we find that the improved MMTI-TSF results have higher accuracy (R2 of 98% and, Root Mean Squared Error (RMSE) of 4mm), and compared with 38 leveling points, the fitting effect of the time series is good. We analyzed the characteristics of deformation along the BSN over a 15-year periods. The results suggest that there is a higher risk of instability in the eastern section of Beijing Subway Line 6 (L6). The land subsidence characteristics along the subway lines are related to its position from the subsidence center, and the edge of the subsidence center presents a segmented feature.


2020 ◽  
Vol 153 ◽  
pp. 02003
Author(s):  
Putu Edi Yastika ◽  
Norikazu Shimizu ◽  
Ni Nyoman Pujianiki ◽  
I Gede Rai Maya Temaja ◽  
I Nyoman Gede Antara ◽  
...  

Numerous cities around the world are facing the problem of land subsidence. In many cases, it is the excessive groundwater extraction to meet human needs that leads to this subsidence. Since land subsidence rates are very slow (a few centimeters per year), the subsidence usually remains unnoticed until it has progressed to the point of causing severe damage to buildings, houses, and/or other infrastructures. Therefore, it is very important to detect the presence of subsidence in advance. In this study, screening for the presence of land subsidence in the city of Denpasar, Bali, Indonesia is conducted. The Sentinel-1A/B SAR dataset, taken from October 2014 to June 2019, is processed using the SBAS DInSAR method. Subsidence is found in the districts of Denpasar Selatan, Denpasar Barat, and Kuta, which falls in the range of -100 mm to -200 mm in an area of about 93.03 ha. All the extracted points of interest show the subsidence having linear behavior. The spatio-temporal behavior of the subsidence in Denpasar is presented clearly. However, the mechanism and the deriving factors of the subsidence remain unclear. Therefore, further studies are needed.


Sensors ◽  
2019 ◽  
Vol 19 (14) ◽  
pp. 3073 ◽  
Author(s):  
Xing ◽  
Chen ◽  
Yuan ◽  
Shi

Building deformation models consistent with reality is a crucial step for time-series deformation monitoring. Most deformation models are empirical mathematical models, lacking consideration of the physical mechanisms of observed objects. In this study, we propose an improved time-series deformation model considering rheological parameters (viscosity and elasticity) based on the Kelvin model. The functional relationships between the rheological parameters and deformation along the Synthetic Aperture Radar ( SAR) line of sight are constructed, and a method for rheological parameter estimation is provided. To assess the feasibility and accuracy of the presented model, both simulated and real deformation data over a stretch of the Lungui highway (built on soft clay subgrade in Guangdong province, China) are investigated with TerraSAR-X satellite imagery. With the proposed deformation model, the unknown rheological parameters over all the high coherence points are obtained and the deformation time-series are generated. The high-pass (HP) deformation component and external leveling ground measurements are utilized to assess the modeling accuracy. The results show that the root mean square of the residual deformation is ±1.6 mm, whereas that of the ground leveling measurements is ±5.0 mm, indicating an improvement in the proposed model by 53%, and 34% compared to the pure linear velocity model. The results indicate the reliability of the presented model for the application of deformation monitoring of soft clay highways. The estimated rheological parameters can be provided as a reference index for the interpretation of long-term highway deformation and the stability control of subgrade construction engineering.


2011 ◽  
Vol 1 (1) ◽  
pp. 25-34 ◽  
Author(s):  
G. Wang ◽  
D. Philips ◽  
J. Joyce ◽  
F. Rivera

The Integration of TLS and Continuous GPS to Study Landslide Deformation: A Case Study in Puerto RicoTerrestrial Laser Scanning (TLS) and Global Positioning System (GPS) technologies provide comprehensive information on ground surface deformation in both spatial and temporal domains. These two data sets are critical inputs for geometric and kinematic modeling of landslides. This paper demonstrates an integrated approach in the application of TLS and continuous GPS (CGPS) data sets to the study of an active landslide on a steep mountain slope in the El Yunque National Forest in Puerto Rico. Major displacements of this landslide in 2004 and 2005 caused the closing of one of three remaining access roads to the national forest. A retaining wall was constructed in 2009 to restrain the landslide and allow the road reopen. However, renewed displacements of the landslide in the first half of 2010 resulted in deformation and the eventual rupture of the retaining wall. Continuous GPS monitoring and two TLS campaigns were performed on the lower portion of the landslide over a three-month period from May to August 2010. The TLS data sets identified the limits and total volume of themoving mass, while the GPS data quantified the magnitude and direction of the displacements. A continuous heavy rainfall in late July 2010 triggered a rapid 2-3 meter displacement of the landslide that finally ruptured the retaining wall. The displacement time series of the rapid displacement is modeled using a fling-step pulse from which precise velocity and acceleration time series of the displacement are derived. The data acquired in this study have demonstrated the effectiveness and power of the integrating TLS and continuous GPS techniques for landslide studies.


Sign in / Sign up

Export Citation Format

Share Document