scholarly journals Onset of interchange instability in a coupled core–SOL plasma

2020 ◽  
Vol 27 (7) ◽  
pp. 072508
Author(s):  
Fryderyk Wilczynski ◽  
David W. Hughes ◽  
Wayne Arter ◽  
Fulvio Militello
2013 ◽  
Vol 20 (3) ◽  
pp. 365-377 ◽  
Author(s):  
W. Lyatsky ◽  
M. L. Goldstein

Abstract. We present here the results of a study of interacting magnetic fields that involves a force normal to the reconnection layer. In the presence of such force, the reconnection layer becomes unstable to interchange disturbances. The interchange instability results in formation of tongues of heated plasma that leaves the reconnection layer through its wide surface rather than through its narrow ends, as is the case in traditional magnetic reconnection models. This plasma flow out of the reconnection layer facilitates the removal of plasma from the layer and leads to fast reconnection. The proposed mechanism provides fast reconnection of interacting magnetic fields and does not depend on the thickness of the reconnection layer. This instability explains the strong turbulence and bidirectional streaming of plasma that is directed toward and away from the reconnection layer that is observed frequently above reconnection layers. The force normal to the reconnection layer also accelerates the removal of plasma islands appearing in the reconnection layer during turbulent reconnection. In the presence of this force normal to the reconnection layer, these islands are removed from the reconnection layer by the "buoyancy force", as happens in the case of interchange instability that arises due to the polarization electric field generated at the boundaries of the islands.


2012 ◽  
Vol 62 (1) ◽  
pp. 41-47 ◽  
Author(s):  
Yasutaka Hiraki ◽  
Fuminori Tsuchiya ◽  
Yuto Katoh

2013 ◽  
Vol 8 (0) ◽  
pp. 2403157-2403157 ◽  
Author(s):  
Ryosuke UEDA ◽  
Masahiko SATO ◽  
Kiyomasa WATANABE ◽  
Yutaka MATSUMOTO ◽  
Yasuhiro SUZUKI ◽  
...  

2020 ◽  
Vol 125 (10) ◽  
Author(s):  
George V. Khazanov ◽  
Emanuel N. Krivorutsky ◽  
Margaret W. Chen ◽  
Colby L. Lemon

1994 ◽  
Vol 154 ◽  
pp. 459-463
Author(s):  
M. Bünte ◽  
O. Steiner ◽  
S.K. Solanki ◽  
V.J. Pizzo

The interchange instability of solar magnetic flux tubes and possible stabilization mechanisms are reviewed. Special attention is paid to the influence of magnetic tension forces and the internal atmosphere, both of which were neglected in earlier studies of this instability. It is found that whirl flows with velocities of only 2.2 km s–1 are strong enough to stabilize the flux tubes. However, their absence or the excitation of other instabilities might lead to a shredding of the tubes. The observability of such a scenario in the infrared is briefly discussed.


Sign in / Sign up

Export Citation Format

Share Document