scholarly journals The cosmic ray-driven streaming instability in astrophysical and space plasmas

2021 ◽  
Vol 28 (8) ◽  
pp. 080601
Author(s):  
A. Marcowith ◽  
A. J. van Marle ◽  
I. Plotnikov
2020 ◽  
Vol 493 (2) ◽  
pp. 2817-2833 ◽  
Author(s):  
Mark R Krumholz ◽  
Roland M Crocker ◽  
Siyao Xu ◽  
A Lazarian ◽  
M T Rosevear ◽  
...  

ABSTRACT Starburst galaxies are efficient γ-ray producers, because their high supernova rates generate copious cosmic ray (CR) protons, and their high gas densities act as thick targets off which these protons can produce neutral pions and thence γ-rays. In this paper, we present a first-principles calculation of the mechanisms by which CRs propagate through such environments, combining astrochemical models with analysis of turbulence in weakly ionized plasma. We show that CRs cannot scatter off the strong large-scale turbulence found in starbursts, because efficient ion-neutral damping prevents such turbulence from cascading down to the scales of CR gyroradii. Instead, CRs stream along field lines at a rate determined by the competition between streaming instability and ion-neutral damping, leading to transport via a process of field line random walk. This results in an effective diffusion coefficient that is nearly energy independent up to CR energies of ∼1 TeV. We apply our computed diffusion coefficient to a simple model of CR escape and loss, and show that the resulting γ-ray spectra are in good agreement with the observed spectra of the starbursts NGC 253, M82, and Arp 220. In particular, our model reproduces these galaxies’ relatively hard GeV γ-ray spectra and softer TeV spectra without the need for any fine-tuning of advective escape times or the shape of the CR injection spectrum.


1984 ◽  
Vol 31 (2) ◽  
pp. 275-299 ◽  
Author(s):  
J. F. McKenzie ◽  
G. M. Webb

Hydrodynamical equations describing the mutual interaction of cosmic rays, thermal plasma, magnetic field and Alfvén waves scattering the cosmic rays used in cosmic ray shock acceleration theory (e.g. McKenzie & Völk 1982; Drury 1983; Webb 1983) are analysed for long-wavelength linear compressive instabilities. The Alfvén wave field may contain a pre-existing component as well as a component excited by the cosmic ray streaming instability. In the case of no Alfvén wave damping, adiabatic wave growth and Alfvén wave generation by the cosmic ray streaming instability, it is found that the backward propagating slow magneto-acoustic mode is driven convectively unstable by the pressure of the self-excited Alfvén waves, provided the thermal plasmaβis sufficiently large. The equations are also analysed for the case where the Alfvén wave growth is balanced by some nonlinear damping mechanisms. In the latter case both the forward and backward propagating slow magneto-acoustic modes may be driven unstable if the plasmaβis sufficiently small. The conditions under which the instabilities occur are delineated, and sample calculations of growth rates given. Possible applications of the instabilities to astrophysical situations are briefly discussed.


2020 ◽  
Vol 633 ◽  
pp. A72 ◽  
Author(s):  
L. Brahimi ◽  
A. Marcowith ◽  
V. S. Ptuskin

Aims. We aim to elucidate cosmic ray (CR) propagation in the weakly ionized environments of supernova remnants (SNRs) basing our analysis on the cosmic ray cloud (CRC) model. Methods. We solved two transport equations simultaneously: one for the CR pressure and one for the Alfvén wave energy density where CRs are initially confined in the SNR shock. Cosmic rays trigger a streaming instability and produce slab-type resonant Alfvén modes. The self-generated turbulence is damped by ion-neutral collisions and by noncorrelated interaction with Alfvén modes generated at large scales. Results. We show that CRs leaking in cold dense phases such as those found in cold neutral medium (CNM) and diffuse molecular medium (DiM) can still be confined over distances of a few tens of parsecs from the CRC center for a few thousand years. At 10 TeV, CR diffusion can be suppressed by two or three orders of magnitude. This effect results from a reduced ion-neutral collision damping in the decoupled regime. We calculate the grammage of CRs in these environments. We find that in both single and multi-phase setups at 10 GeV, CNM and DiM media can produce grammage in the range 10–20 g cm−2 in the CNM and DiM phases. At 10 TeV, because of nonlinear propagation the grammage increases to values in the range 0.5–20 g cm−2 in these two phases. We also present preliminary calculations in inhomogeneous interstellar medium combining two or three different phases where we obtain the same trends.


Sign in / Sign up

Export Citation Format

Share Document