scholarly journals Heat transfer model based on diffusion layer theory for dropwise condensation with high non-condensable gas

AIP Advances ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 125305
Author(s):  
Weihong Liu ◽  
Xiang Ling
Author(s):  
XinMei Shi ◽  
Daan M. Maijer ◽  
Guy Dumont

Controlling and eliminating defects, such as macro-porosity, in die casting processes is an on-going challenge for manufacturers. Current strategies for eliminating defects focus on the execution of a pre-set casting cycle, die structure design or the combination of both. To respond to process variability and mitigate its negative effects, advanced process control methodologies may be employed to dynamically adjust the operational parameters of the process. In this work, a finite element heat transfer model, validated by comparison with experimental data, has been developed to predict the evolution of temperatures and the volume of liquid encapsulation in an experimental casting process. A virtual process, made up of the heat transfer model and a wrapper script for communication, has been employed to simulate the continuous operation of the real process. A stochastic state-space model, based on data from measurements and the virtual process, has been developed to provide a reliable representation of this virtual process. The parameters of the deterministic portion result from system identification of the virtual process, whereas the parameters of the stochastic portion arise from the analysis and comparison of measurement data with virtual process data. The resulting state-space model, which can be extended to a multi-input multi-output model, will facilitate the design of a model-based controller for this process.


Author(s):  
Anilchandra Attaluri ◽  
Robert Ivkov ◽  
Ronghui Ma ◽  
Liang Zhu

A coupled theoretical framework comprising a suspension of nanoparticles transport in porous media model and a heat transfer model is developed to address nanoparticle redistribution during heating. Nanoparticle redistribution in biological tissues during magnetic nanoparticle hyperthermia is described by a multi-physics model that consists of five major components: (a) a fully saturated porous media model for fluid flow through tissue; (b) nanoparticle convection and diffusion; (c) heat transfer model based on heat generation by local nanoparticle concentration; (d) a model to predict tissue thermal damage and corresponding change to the porous structure; and (e) a nanoparticle redistribution model based on the dynamic porosity and diffusion diffusivity. The integrated model has been used to predict the structural damage in porous tumors and its effect on nanoparticle-induced heating in tumors. Thermal damage in the vicinity of the tumor center that is predicted by the Arrhenius equation increases from 14% with 10 minutes of heating to almost 99% after 20 minutes. It then induces an increased tumor porosity that increases nanoparticle diffusivity by seven-fold. The model predicts thermal damage induced by nanoparticle redistribution increases by 20% in the radius of the spherical tissue region containing nanoparticles. The developed model has demonstrated the feasibility of enhancing nanoparticle dispersion from injection sites using targeted thermal damage.


2014 ◽  
Vol 889-890 ◽  
pp. 309-315
Author(s):  
Zhi‘en Liu ◽  
Yu Xu

A CFD simulation of the performance of an EGR cooler was carried out. Considering the differences between the heat exchange process of its inlet portion, middle portion and outlet portion, this simulation divided the model into three parts and analyzed them in turn. For the inlet and outlet portion, the convective heat transfer model was applied; while for the middle portion, an air-solid-liquid three-phase heat transfer model, based on strong coupling was extracted. According to the geometry continuity of the model, the boundary conditions of the middle portion was determined by the simulation result of the inlet portion, and the boundary conditions of the outlet portion was determined by the simulation result of the middle portion. Ultimately, we can gain the overall temperature distribution of the EGR cooler under the premise of ensuring the accuracy of the heat transfer model and minimizing the computation. This model based on decomposition methods was applied to the temperature field simulation under different EGR cooler rate and the simulation results were in good agreement with the experimental results.


2021 ◽  
Vol 2116 (1) ◽  
pp. 012012
Author(s):  
Jakob Sablowski ◽  
Simon Unz ◽  
Michael Beckmann

Abstract Established heat transfer models for dropwise condensation (DWC) consider wetting behavior, surface structure and nucleation dynamics to calculate the heat flux. However, model results often deviate from experiments, in part due to uncertainties of the model input parameters. In this study, we apply quantitative sensitivity analysis to a pure steam DWC heat transfer model in order to attribute the variation of the model result to its input parameters. Four scenarios with different variations of the model parameters are discussed and sensitivity coefficients for each parameter are calculated. Our results show a high sensitivity of the model result towards the coating thickness, the contact angle and the nucleation site density, underlining the need to accurately determine these parameters in DWC experiments.


Sign in / Sign up

Export Citation Format

Share Document