Fluid–structure interaction of a flexible membrane wing at a fixed angle of attack

2020 ◽  
Vol 32 (12) ◽  
pp. 127102
Author(s):  
Xi He ◽  
Jin-Jun Wang
Author(s):  
Mohammad Khairul Habib Pulok ◽  
Uttam K. Chakravarty

Abstract Unmanned aerial vehicles are applicable in a lot of areas including weather condition monitoring, surveillance, and reconnaissance. They need further development in design, especially, for the turbulent atmospheric conditions. Smart materials are considered for wing manufacturing for gust alleviation whereas membranes are found suitable for such applications, and therefore, analyzing aerodynamic properties of the membrane is important. Wind gusts create an abrupt atmospheric situation for unmanned aerial vehicles during the flight. In this study, a continuous gust profile and two types of stochastic gust models, i.e., Dryden gust model and von Karman gust model are developed to study the effects of gust load on a flexible membrane wing. One of the promising ways to reduce the effects of the gust is by using an electroactive membrane wing. A fluid-structure-interaction model by coupling the finite element model of the membrane and computational fluid dynamics model of the surrounding airflow is generated. Aerodynamic coefficients are calculated from the forces found from the numerical results for different gust velocities. A wind-tunnel experimental setup is used to investigate the aerodynamic responses of the membrane wing. Dryden gust model and von Karman gust model are found comparable with a minimum variation of magnitude in the gust velocity profile. The coefficients of lift and drag fluctuate significantly with the change in velocity due to wind gust. A validation of the fluid-structure-interaction model is performed by comparing the numerical results for the lift and drag coefficients with the experimental results. The outcome of this study contributes to better understand the aerodynamics and maneuverability of unmanned aerial vehicles in the gust environment.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Mustafa Serdar Genç ◽  
Hacımurat Demir ◽  
Mustafa Özden ◽  
Tuna Murat Bodur

Purpose The purpose of this exhaustive experimental study is to investigate the fluid-structure interaction in the flexible membrane wings over a range of angles of attack for various Reynolds numbers. Design/methodology/approach In this paper, an experimental study on fluid-structure interaction of flexible membrane wings was presented at Reynolds numbers of 2.5 × 104, 5 × 104 and 7.5 × 104. In the experimental studies, flow visualization, velocity and deformation measurements for flexible membrane wings were performed by the smoke-wire technique, multichannel constant temperature anemometer and digital image correlation system, respectively. All experimental results were combined and fluid-structure interaction was discussed. Findings In the flexible wings with the higher aspect ratio, higher vibration modes were noticed because the leading-edge separation was dominant at lower angles of attack. As both Reynolds number and the aspect ratio increased, the maximum membrane deformations increased and the vibrations became visible, secondary vibration modes were observed with growing the leading-edge vortices at moderate angles of attack. Moreover, in the graphs of the spectral analysis of the membrane displacement and the velocity; the dominant frequencies coincided because of the interaction of the flow over the wings and the membrane deformations. Originality/value Unlike available literature, obtained results were presented comparatively using the sketches of the smoke-wire photographs with deformation measurement or turbulence statistics from the velocity measurements. In this study, fluid-structure interaction and leading-edge vortices of membrane wings were investigated in detail with increasing both Reynolds number and the aspect ratio.


2020 ◽  
Vol 142 (5) ◽  
Author(s):  
Mithun Kanchan ◽  
Ranjith Maniyeri

Abstract Many microfluidics-based applications involve fluid–structure interaction (FSI) of flexible membranes. Thin flexible membranes are now being widely used for mixing enhancement, particle segregation, flowrate control, drug delivery, etc. The FSI simulations related to these applications are challenging to numerically implement. In this direction, techniques like immersed boundary method (IBM) have been successful. In this study, two-dimensional numerical simulation of flexible membrane fixed at two end points in a rectangular channel subjected to uniform fluid flow is carried out at low Reynolds number using a finite volume based IBM. A staggered Cartesian grid system is used and SIMPLE algorithm is used to solve the governing continuity and Navier–Stokes equations. The developed model is validated using the previous research work and numerical simulations are carried out for different parametric test cases. Different membrane mode shapes are observed due to the complex interplay between the hydrodynamics and structural elastic forces. Since the membrane undergoes deformation with respect to inlet fluid conditions, a variation in flowrate past the flexible structure is confirmed. It is found that, by changing the membrane length, bending rigidity, and its initial position in the channel, flowrate can be controlled. Also, for membranes that are placed at the channel midplane undergoing self-excited oscillations, there exists a critical dimensionless membrane length condition L ≥ 1.0 that governs this behavior. Finally, an artificial neural network (ANN) model is developed that successfully predicts flowrate in the channel for different membrane parameters.


2019 ◽  
Vol 30 (6) ◽  
pp. 2883-2911 ◽  
Author(s):  
Mohammad Ghalambaz ◽  
S.A.M. Mehryan ◽  
Muneer A. Ismael ◽  
Ali Chamkha ◽  
D. Wen

Purpose The purpose of the present paper is to model a cavity, which is equally divided vertically by a thin, flexible membrane. The membranes are inevitable components of many engineering devices such as distillation systems and fuel cells. In the present study, a cavity which is equally divided vertically by a thin, flexible membrane is model using the fluid–structure interaction (FSI) associated with a moving grid approach. Design/methodology/approach The cavity is differentially heated by a sinusoidal time-varying temperature on the left vertical wall, while the right vertical wall is cooled isothermally. There is no thermal diffusion from the upper and lower boundaries. The finite-element Galerkin technique with the aid of an arbitrary Lagrangian–Eulerian procedure is followed in the numerical procedure. The governing equations are transformed into non-dimensional forms to generalize the solution. Findings The effects of four pertinent parameters are investigated, i.e., Rayleigh number (104 = Ra = 107), elasticity modulus (5 × 1012 = ET = 1016), Prandtl number (0.7 = Pr = 200) and temperature oscillation frequency (2p = f = 240p). The outcomes show that the temperature frequency does not induce a notable effect on the mean values of the Nusselt number and the deformation of the flexible membrane. The convective heat transfer and the stretching of the thin, flexible membrane become higher with a fluid of a higher Prandtl number or with a partition of a lower elasticity modulus. Originality/value The authors believe that the modeling of natural convection and heat transfer in a cavity with the deformable membrane and oscillating wall heating is a new subject and the results have not been published elsewhere.


2018 ◽  
Author(s):  
Zheng Huang ◽  
Ying Xiong ◽  
Ye Xu ◽  
Shancheng Li

To research the flexible hydrofoils’ hydroelastic response, the fluid-structure interaction (FSI) characteristic investigation is conducted on the basis of the analysis of a rigid hydrofoil’s hydrodynamic performance. For a rigid cantilevered rectangular hydrofoil, the pitching hydrodynamic performance is calculated using boundary motion with remeshing strategy. The Laminar Separation Bubble (LSB) and turbulent transition are captured. Numerical flow analysis revealed that the LSB occurs at 0.8c when pitching at initial angle of attack. As the angle increases to 5.1°, the laminar to turbulent transition occurs and the lift presents an inflection. For a geometric equivalent flexible hydrofoil, the static FSI characteristic is researched using oneway and two-way FSI method. The lift decreases and the drag increases using two-way compared to one-way FSI. The center of pressure and the maximum deformation move from trailing edge to leading edge as the angle of attack increases, showing the necessary of two-way FSI calculation. The transient FSI characteristic of the flexible hydrofoil is then studied using LES model. The lift fluctuation at 8° in frequency domain is calculated . The dry mode and wet mode natural frequency of the flexible hydrofoil are calculated to simulate the vibration performance, which meet the experiment data quite well, laying foundation for further research on the hydroelastic vibration response.


2021 ◽  
Vol 33 (6) ◽  
pp. 063610
Author(s):  
Guangjing Huang ◽  
Yingjie Xia ◽  
Yuting Dai ◽  
Chao Yang ◽  
You Wu

Sign in / Sign up

Export Citation Format

Share Document