Photofragment ion imaging in vibrational predissociation of the H2O+Ar complex ion

2021 ◽  
Vol 154 (17) ◽  
pp. 174301
Author(s):  
Yuji Nakashima ◽  
Yuri Ito ◽  
Mizuhiro Kominato ◽  
Keijiro Ohshimo ◽  
Fuminori Misaizu
Author(s):  
Stephen R. Bolsover

The field of intracellular ion concentration measurement expanded greatly in the 1980's due primarily to the development by Roger Tsien of ratiometric fluorescence dyes. These dyes have many applications, and in particular they make possible to image ion concentrations: to produce maps of the ion concentration within living cells. Ion imagers comprise a fluorescence microscope, an imaging light detector such as a video camera, and a computer system to process the fluorescence signal and display the map of ion concentration.Ion imaging can be used for two distinct purposes. In the first, the imager looks at a field of cells, measuring the mean ion concentration in each cell of the many in the field of view. One can then, for instance, challenge the cells with an agonist and examine the response of each individual cell. Ion imagers are not necessary for this sort of experiment: one can instead use a system that measures the mean ion concentration in a just one cell at any one time. However, they are very much more convenient.


Author(s):  
Peter K. Hepler ◽  
Dale A. Callaham

Calcium ions (Ca) participate in many signal transduction processes, and for that reason it is important to determine where these ions are located within the living cell, and when and to what extent they change their local concentration. Of the different Ca-specific indicators, the fluorescent dyes, developed by Grynkiewicz et al. (1), have proved most efficacious, however, their use on plants has met with several problems (2). First, the dyes as acetoxy-methyl esters are often cleaved by extracellular esterases in the plant cell wall, and thus they do not enter the cell. Second, if the dye crosses the plasma membrane it may continue into non-cytoplasmic membrane compartments. Third, even if cleaved by esterases in the cytoplasm, or introduced as the free acid into the cytoplasmic compartment, the dyes often become quickly sequestered into vacuoles and organelles, or extruded from the cell. Finally, the free acid form of the dye readily complexes with proteins reducing its ability to detect free calcium. All these problems lead to an erroneous measurement of calcium (2).


Author(s):  
Gertrude. F. Rempfer

Optimum performance in electron and ion imaging instruments, such as electron microscopes and probe-forming instruments, in most cases depends on a compromise either between imaging errors due to spherical and chromatic aberrations and the diffraction error or between the imaging errors and the current in the image. These compromises result in the use of very small angular apertures. Reducing the spherical and chromatic aberration coefficients would permit the use of larger apertures with resulting improved performance, granted that other problems such as incorrect operation of the instrument or spurious disturbances do not interfere. One approach to correcting aberrations which has been investigated extensively is through the use of multipole electric and magnetic fields. Another approach involves the use of foil windows. However, a practical system for correcting spherical and chromatic aberration is not yet available.Our approach to correction of spherical and chromatic aberration makes use of an electrostatic electron mirror. Early studies of the properties of electron mirrors were done by Recknagel. More recently my colleagues and I have studied the properties of the hyperbolic electron mirror as a function of the ratio of accelerating voltage to mirror voltage. The spherical and chromatic aberration coefficients of the mirror are of opposite sign (overcorrected) from those of electron lenses (undercorrected). This important property invites one to find a way to incorporate a correcting mirror in an electron microscope. Unfortunately, the parts of the beam heading toward and away from the mirror must be separated. A transverse magnetic field can separate the beams, but in general the deflection aberrations degrade the image. The key to avoiding the detrimental effects of deflection aberrations is to have deflections take place at image planes. Our separating system is shown in Fig. 1. Deflections take place at the separating magnet and also at two additional magnetic deflectors. The uncorrected magnified image formed by the objective lens is focused in the first deflector, and relay lenses transfer the image to the separating magnet. The interface lens and the hyperbolic mirror acting in zoom fashion return the corrected image to the separating magnet, and the second set of relay lenses transfers the image to the final deflector, where the beam is deflected onto the projection axis.


AIP Advances ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 015232
Author(s):  
S. V. Rahul ◽  
Rakesh Y. Kumar ◽  
T. Sairam ◽  
Ratul Sabui ◽  
Angana Mondal ◽  
...  

Author(s):  
Alexei Chichinin ◽  
Christof Maul ◽  
Karl-Heinz Gericke

The photodissociation dynamics of PCl3 at 235 nm has been studied by monitoring ground state Cl(2P3/2) and spin-orbitally excited Cl(2P1/2) atoms by resonance enhanced multiphoton ionization(REMPI). Also, the PCl+n (n=0,1,2)...


2020 ◽  
Author(s):  
A.I. Chichinin ◽  
C. Maul ◽  
K.-H. Gericke

1989 ◽  
Vol 90 (5) ◽  
pp. 2605-2616 ◽  
Author(s):  
Joseph I. Cline ◽  
N. Sivakumar ◽  
Dwight D. Evard ◽  
Craig R. Bieler ◽  
Brian P. Reid ◽  
...  

2009 ◽  
Vol 11 (20) ◽  
pp. 3958 ◽  
Author(s):  
Daniel Irimia ◽  
Rob Kortekaas ◽  
Maurice H. M. Janssen

Sign in / Sign up

Export Citation Format

Share Document