chromatic aberrations
Recently Published Documents


TOTAL DOCUMENTS

199
(FIVE YEARS 40)

H-INDEX

23
(FIVE YEARS 3)

2022 ◽  
pp. 313-342
Author(s):  
Lakshminarayan Hazra

Nanophotonics ◽  
2022 ◽  
Vol 0 (0) ◽  
Author(s):  
Jacob T. Heiden ◽  
Min Seok Jang

Abstract Controlling the wavefront of light, especially on a subwavelength scale, is pivotal in modern optics. Metasurfaces present a unique platform for realizing flat lenses, called metalenses, with thicknesses on the order of the wavelength. Despite substantial effort, however, suppressing the chromatic aberrations over large operational bandwidths of metalenses still remains a challenge. Here, we develop a systematic design method enabling a simultaneous, polarization-insensitive control of the phase and the group delay of a light beam based on libraries of transmission-mode dielectric meta-elements. Mid-infrared achromatic metalenses are designed and theoretically analyzed to have diffraction-limited focal spots with vanishing chromatic aberrations in the operating wavelength range of 6–8.5 μm, while maintaining high focusing efficiencies of 41% on average. The proposed methodology, which can be used as a general design rule for all spectra, also provides a versatile design scheme for ultrashort pulse focusing and achromatic vortex-beam generation (orbital angular momentum), representing a major advance toward practical implementations of functional metalenses.


2022 ◽  
Vol 29 (1) ◽  
Author(s):  
Malte Storm ◽  
Florian Döring ◽  
Shashidhara Marathe ◽  
Silvia Cipiccia ◽  
Christian David ◽  
...  

Full-field transmission X-ray microscopy (TXM) is a very potent high-resolution X-ray imaging technique. However, it is challenging to achieve fast acquisitions because of the limited efficiency of the optics. Using a broader energy bandwidth, for example using a multilayer monochromator, directly increases the flux in the experiment. The advantage of more counts needs to be weighed against a deterioration in achievable resolution because focusing optics show chromatic aberrations. This study presents theoretical considerations of how much the resolution is affected by an increase in bandwidth as well as measurements at different energy bandwidths (ΔE/E = 0.013%, 0.27%, 0.63%) and the impact on achievable resolution. It is shown that using a multilayer monochromator instead of a classical silicon double-crystal monochromator can increase the flux by an order of magnitude with only a limited effect on the resolution.


Author(s):  
Nina Artioukhina

The article is devoted to the theory of calculating mirror systems with anastigmatic properties, namely, the area of research in terms of developing methods for parametric calculation of dimensions and aberration correction. The such systems can correct three third-order aberrations. Mirror anastigmats allow developing the angular field of view of devices while maintaining a high numerical aperture, which allows them to be used in optoelectronic equipment operating in a wide spectral range. Complete absence of chromatic aberrations, high resolution, permissible wave criteria for image quality provide excellent opportunities for using mirror anastigmatic systems. General methodological approaches have been developed that can be applied to the creation of detailed engineering and technical methods for calculating a group of mirror anastigmatic systems. A serious drawback of reflective optics is center without central screening, which degrades image quality. To eliminate it, rotations or displacements of the mirrors are intro-duced, but non-elementary aberrations of even orders appear, which must be corrected. The creation of compositions with decentered catoptric elements requires further development of the calculation and methodological base. Mathematical solutions to the problem of creating basic models of non-centered mirror systems are presented. Accurate formulas are obtained for the calculation of real rays from the conditions of astigmatism and coma correction for the given angles of incidence of the chief ray on the mirror surfaces and the «oblique» thickness  , which determines their relative position. Based on the proposed formulas, a new method for parametric calculation of decentered mirror systems has been created, which allows one to compose algorithms and design both basic models and complex mirror systems from off-axis mirrors. The development of new algorithms for two- and three-mirror decenter lenses will increase the accumulated potential of computational optics. The scope of the proposed technique can be expanded in terms of the number of components.


2021 ◽  
Author(s):  
Leonid Andronov ◽  
Rachel Genthial ◽  
Didier Hentsch ◽  
Bruno P Klaholz

Single molecule localization microscopy (SMLM) with a dichroic image splitter can provide invaluable multi-color information regarding colocalization of individual molecules, but it often suffers from technical limitations. So far, demixing algorithms give suboptimal results in terms of localization precision and correction of chromatic aberrations. Here we present an image splitter based multi-color SMLM method (splitSMLM) that offers much improved localization precision & drift correction, compensation of chromatic aberrations, and optimized performance of fluorophores in a specific buffer to equalize their reactivation rates for simultaneous imaging. A novel spectral demixing algorithm, SplitViSu, fully preserves localization precision with essentially no data loss and corrects chromatic aberrations at the nanometer scale. Multi-color performance is further improved by using optimized fluorophore and filter combinations. Applied to three-color imaging of the nuclear pore complex (NPC), this method provides a refined positioning of the individual NPC proteins and reveals that Pom121 clusters act as NPC deposition loci, hence illustrating strength and general applicability of the method.


2021 ◽  
Vol 15 ◽  
Author(s):  
Marcus N. Leiwe ◽  
Satoshi Fujimoto ◽  
Takeshi Imai

Over the last decade, tissue-clearing techniques have expanded the scale of volumetric fluorescence imaging of the brain, allowing for the comprehensive analysis of neuronal circuits at a millimeter scale. Multicolor imaging is particularly powerful for circuit tracing with fluorescence microscopy. However, multicolor imaging of large samples often suffers from chromatic aberration, where different excitation wavelengths of light have different focal points. In this study, we evaluated chromatic aberrations for representative objective lenses and a clearing agent with confocal microscopy and found that axial aberration is particularly problematic. Moreover, the axial chromatic aberrations were often depth-dependent. Therefore, we developed a program that is able to align depths for different fluorescence channels based on reference samples with fluorescent beads or data from guide stars within biological samples. We showed that this correction program can successfully correct chromatic aberrations found in confocal images of multicolor-labeled brain tissues. Our simple post hoc correction strategy is useful to obtain large-scale multicolor images of cleared tissues with minimal chromatic aberrations.


2021 ◽  
Vol 18 ◽  
pp. 100113
Author(s):  
Robin Horn ◽  
Maik Rosenberger ◽  
Gunther Notni ◽  
Andrei Golomoz ◽  
Richard Fütterer ◽  
...  

2021 ◽  
Vol 2091 (1) ◽  
pp. 012012
Author(s):  
A S Beliaeva ◽  
G E Romanova ◽  
A N Chertov

Abstract Developing a source with the possibility of tuning in wavelengths based on an acousto-optical tunable filter (AOTF), an essential factor is the ability to provide accurate color coordinates of the simulated color (in the case of developing a color standard for colorimetry) or the required wavelength (in the case of an application for spectral studies). As shown earlier, the choice of the principal layout – confocal or parallel beam path - primarily determines the dimensions and efficiency of using the luminous flux. However, these schemes also need to be analyzed for color or wavelength fidelity, considering other components used in the scheme. The analysis performed allows to identify the optimal scheme to ensure the required color reproduction accuracy and establish the requirements for correcting chromatic aberrations of the components.


Nanomaterials ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 2760
Author(s):  
Naitao Song ◽  
Nianxi Xu ◽  
Dongzhi Shan ◽  
Yuanhang Zhao ◽  
Jinsong Gao ◽  
...  

Longwave infrared (LWIR) optics are essential for several technologies, such as thermal imaging and wireless communication, but their development is hindered by their bulk and high fabrication costs. Metasurfaces have recently emerged as powerful platforms for LWIR integrated optics; however, conventional metasurfaces are highly chromatic, which adversely affects their performance in broadband applications. In this work, the chromatic dispersion properties of metasurfaces are analyzed via ray tracing, and a general method for correcting chromatic aberrations of metasurfaces is presented. By combining the dynamic and geometric phases, the desired group delay and phase profiles are imparted to the metasurfaces simultaneously, resulting in good achromatic performance. Two broadband achromatic metasurfaces based on all-germanium platforms are demonstrated in the LWIR : a broadband achromatic metalens with a numerical aperture of 0.32, an average intensity efficiency of 31%, and a Strehl ratio above 0.8 from 9.6 μm to 11.6 μm, and a broadband achromatic metasurface grating with a constant deflection angle of 30° from 9.6 μm to 11.6 μm. Compared with state-of-the-art chromatic-aberration-restricted LWIR metasurfaces, this work represents a substantial advance and brings the field a step closer to practical applications.


Author(s):  
Matthew Bergkoetter ◽  
Brian Kruschwitz ◽  
Seung-Whan Bahk ◽  
James Fienup

Sign in / Sign up

Export Citation Format

Share Document