Improving Seebeck coefficient of thermoelectrochemical cells by controlling ligand complexation at metal redox centers

2021 ◽  
Vol 118 (25) ◽  
pp. 253901
Author(s):  
Andrey Gunawan ◽  
Pilarisetty Tarakeshwar ◽  
Vladimiro Mujica ◽  
Daniel A. Buttry ◽  
Patrick E. Phelan
2016 ◽  
Author(s):  
Olivia M. Healy ◽  
◽  
Donald Pan ◽  
Jesse Soucheck ◽  
Wendy H. Yang ◽  
...  
Keyword(s):  

Author(s):  
Yimin Liang ◽  
Joseph Ka-Ho Hui ◽  
Masa-aki Morikawa ◽  
Hirotaka Inoue ◽  
Teppei Yamada ◽  
...  

2021 ◽  
pp. 138302
Author(s):  
Štěpánka Nováková Lachmanová ◽  
František Vavrek ◽  
Táňa Sebechlebská ◽  
Viliam Kolivoška ◽  
Michal Valášek ◽  
...  

2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Yijie Li ◽  
Nguyen Van Toan ◽  
Zhuqing Wang ◽  
Khairul Fadzli Bin Samat ◽  
Takahito Ono

AbstractPorous silicon (Si) is a low thermal conductivity material, which has high potential for thermoelectric devices. However, low output performance of porous Si hinders the development of thermoelectric performance due to low electrical conductivity. The large contact resistance from nonlinear contact between porous Si and metal is one reason for the reduction of electrical conductivity. In this paper, p- and n-type porous Si were formed on Si substrate by metal-assisted chemical etching. To decrease contact resistance, p- and n-type spin on dopants are employed to dope an impurity element into p- and n-type porous Si surface, respectively. Compared to the Si substrate with undoped porous samples, ohmic contact can be obtained, and the electrical conductivity of doped p- and n-type porous Si can be improved to 1160 and 1390 S/m, respectively. Compared with the Si substrate, the special contact resistances for the doped p- and n-type porous Si layer decreases to 1.35 and 1.16 mΩ/cm2, respectively, by increasing the carrier concentration. However, the increase of the carrier concentration induces the decline of the Seebeck coefficient for p- and n-type Si substrates with doped porous Si samples to 491 and 480 μV/K, respectively. Power factor is related to the Seebeck coefficient and electrical conductivity of thermoelectric material, which is one vital factor that evaluates its output performance. Therefore, even though the Seebeck coefficient values of Si substrates with doped porous Si samples decrease, the doped porous Si layer can improve the power factor compared to undoped samples due to the enhancement of electrical conductivity, which facilitates its development for thermoelectric application.


1971 ◽  
Vol 49 (12) ◽  
pp. 2044-2047
Author(s):  
L. G. Boxall ◽  
K. E. Johnson

The Seebeck coefficient, εT, of the thermocell Ag(T)/AgNO3 in NaNO3 − KNO3/Ag (T + ΔT) was measured as a function of silver nitrate concentration and temperature. Extrapolation of the results to unit mole fraction, N, of AgNO3 gave the value εT0 = − 277.5 − 0.136T °C (µV deg−1).For several mixed melts of AgNO3 and an alkali nitrate the function [Formula: see text] was calculated and shown to be linear in N. P was extrapolated to finite values for the pure alkali nitrates.


Sign in / Sign up

Export Citation Format

Share Document