scholarly journals Sheath size and Child–Langmuir law in one dimensional bounded plasma system in the presence of an oblique magnetic field: PIC results

2021 ◽  
Vol 28 (8) ◽  
pp. 083501
Author(s):  
J. Moritz ◽  
S. Heuraux ◽  
E. Gravier ◽  
M. Lesur ◽  
F. Brochard ◽  
...  
2021 ◽  
Vol 28 (12) ◽  
pp. 123507
Author(s):  
T. Gyergyek ◽  
S. Costea ◽  
K. Bajt ◽  
A. Valič ◽  
J. Kovačič

1993 ◽  
Vol 50 (3) ◽  
pp. 349-357 ◽  
Author(s):  
B. C. Kalita ◽  
M. K. Kalita ◽  
R. P. Bhatta

The formation of ion-acoustic solitary waves in a magnetized plasma with stationary ions and beam ions together with inertia-less electrons is investigated. The generation of waves in a plane is assumed to be one-dimensional, in a direction inclined at an angle θ to the direction of the magnetic field, with constant drift velocity of the ion beam. Remarkably, the amplitudes of the solitons are found to attain a maximum value at a particular beam-ion velocity γ, and then decrease slightly and remain almost constant for higher γ. The width of the waves is large at small y for small beam-ion density Nb, but it attains a constant minimum value at a particular value of γ. The amplitude decreases sharply to zero with decreasing y, whereas it remains almost constantly high for larger y. It is observed that as a wave approaches the direction of the magnetic field, its amplitude increases to a constant maximum value, which is larger for higher beam-ion velocities.


1985 ◽  
Vol 40 (10) ◽  
pp. 959-967
Author(s):  
A. Salat

The equivalence of magnetic field line equations to a one-dimensional time-dependent Hamiltonian system is used to construct magnetic fields with arbitrary toroidal magnetic surfaces I = const. For this purpose Hamiltonians H which together with their invariants satisfy periodicity constraints have to be known. The choice of H fixes the rotational transform η(I). Arbitrary axisymmetric fields, and nonaxisymmetric fields with constant η(I) are considered in detail.Configurations with coinciding magnetic and current density surfaces are obtained. The approach used is not well suited, however, to satisfying the additional MHD equilibrium condition of constant pressure on magnetic surfaces.


2021 ◽  
Vol 87 (2) ◽  
Author(s):  
P. Kim ◽  
R. Jorge ◽  
W. Dorland

A simplified analytical form of the on-axis magnetic well and Mercier's criterion for interchange instabilities for arbitrary three-dimensional magnetic field geometries is derived. For this purpose, a near-axis expansion based on a direct coordinate approach is used by expressing the toroidal magnetic flux in terms of powers of the radial distance to the magnetic axis. For the first time, the magnetic well and Mercier's criterion are then written as a one-dimensional integral with respect to the axis arclength. When compared with the original work of Mercier, the derivation here is presented using modern notation and in a more streamlined manner that highlights essential steps. Finally, these expressions are verified numerically using several quasisymmetric and non-quasisymmetric stellarator configurations including Wendelstein 7-X.


Sign in / Sign up

Export Citation Format

Share Document