scholarly journals Molecular design of two-dimensional perovskite cations for efficient energy cascade in perovskite light-emitting diodes

2021 ◽  
Vol 119 (15) ◽  
pp. 154101
Author(s):  
Nur Fadilah Jamaludin ◽  
Benny Febriansyah ◽  
Yan Fong Ng ◽  
Natalia Yantara ◽  
Mingjie Li ◽  
...  
Nanophotonics ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Yiyue Zhang ◽  
Masoumeh Keshavarz ◽  
Elke Debroye ◽  
Eduard Fron ◽  
Miriam Candelaria Rodríguez González ◽  
...  

Abstract Lead halide perovskites have attracted tremendous attention in photovoltaics due to their impressive optoelectronic properties. However, the poor stability of perovskite-based devices remains a bottleneck for further commercial development. Two-dimensional perovskites have great potential in optoelectronic devices, as they are much more stable than their three-dimensional counterparts and rapidly catching up in performance. Herein, we demonstrate high-quality two-dimensional novel perovskite thin films with alternating cations in the interlayer space. This innovative perovskite provides highly stable semiconductor thin films for efficient near-infrared light-emitting diodes (LEDs). Highly efficient LEDs with tunable emission wavelengths from 680 to 770 nm along with excellent operational stability are demonstrated by varying the thickness of the interlayer spacer cation. Furthermore, the best-performing device exhibits an external quantum efficiency of 3.4% at a high current density (J) of 249 mA/cm2 and remains above 2.5% for a J up to 720 mA cm−2, leading to a high radiance of 77.5 W/Sr m2 when driven at 6 V. The same device also shows impressive operational stability, retaining almost 80% of its initial performance after operating at 20 mA/cm2 for 350 min. This work provides fundamental evidence that this novel alternating interlayer cation 2D perovskite can be a promising and stable photonic emitter.


2018 ◽  
Vol 12 (1) ◽  
pp. 015505 ◽  
Author(s):  
Qingqing Wu ◽  
Yanan Guo ◽  
Suresh Sundaram ◽  
Jianchang Yan ◽  
Liang Zhang ◽  
...  

2018 ◽  
Vol 49 (1) ◽  
pp. 1800-1803
Author(s):  
Ji Seon Jang ◽  
Si Hyun Han ◽  
Hye Won Choi ◽  
Kyoung Soo Yook ◽  
Jun Yeob Lee

2022 ◽  
pp. 100173
Author(s):  
Yi-Chun Chien ◽  
Tien-Lin Shen ◽  
Wang-Kai Wu ◽  
Chun-Yi Li ◽  
Hao-Ting Chin ◽  
...  

Author(s):  
Sivakumar Vaidyanathan ◽  
Jairam Tagare

Considering the imminent global energy crisis and inefficient energy utilization, energy-efficient organic light-emitting diodes (OLEDs) are considered one of the most competitive candidates for displays and particularly for future energy-saving lighting sources. Full color displays require all primary colors: red, green, and blue (RGB). In recent decades, numerous phenanthroimidazole (PI) RGB-emitting materials have been developed for efficient OLEDs. In organic electronics, considerable interest is shown on PI, due to ease in fluorophore modification. This chapter focuses on the design and synthesis of PI-based materials and their applications in OLEDs. At first, some nondoped blue, green, and yellow fluorescent materials are comprehensively studied. Then attention has been paid for typical blue, green, yellow, orange, and red PhOLEDs of PI-based fluorophores as a host materials are briefly presented. The molecular design concept, general synthetic routes for PI materials, and the applications of fluorophores in fluorescent OLEDs and host materials in PhOLEDs are reviewed.


2018 ◽  
Vol 14 ◽  
pp. 282-308 ◽  
Author(s):  
Thanh-Tuân Bui ◽  
Fabrice Goubard ◽  
Malika Ibrahim-Ouali ◽  
Didier Gigmes ◽  
Frédéric Dumur

The design of highly emissive and stable blue emitters for organic light emitting diodes (OLEDs) is still a challenge, justifying the intense research activity of the scientific community in this field. Recently, a great deal of interest has been devoted to the elaboration of emitters exhibiting a thermally activated delayed fluorescence (TADF). By a specific molecular design consisting into a minimal overlap between the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) due to a spatial separation of the electron-donating and the electron-releasing parts, luminescent materials exhibiting small S1–T1 energy splitting could be obtained, enabling to thermally upconvert the electrons from the triplet to the singlet excited states by reverse intersystem crossing (RISC). By harvesting both singlet and triplet excitons for light emission, OLEDs competing and sometimes overcoming the performance of phosphorescence-based OLEDs could be fabricated, justifying the interest for this new family of materials massively popularized by Chihaya Adachi since 2012. In this review, we proposed to focus on the recent advances in the molecular design of blue TADF emitters for OLEDs during the last few years.


2020 ◽  
Vol 11 (18) ◽  
pp. 7583-7589 ◽  
Author(s):  
Zhe Liu ◽  
Liangliang Deng ◽  
Hanjun Yang ◽  
Haomiao Yu ◽  
Kai Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document