Benchmarking an improved statistical adiabatic channel model for competing inelastic and reactive processes

2021 ◽  
Vol 155 (10) ◽  
pp. 104302
Author(s):  
Maarten Konings ◽  
Benjamin Desrousseaux ◽  
François Lique ◽  
Jérôme Loreau
2012 ◽  
Vol E95-B (1) ◽  
pp. 254-262
Author(s):  
Yoshitoshi YAMASHITA ◽  
Eiji OKAMOTO ◽  
Yasunori IWANAMI ◽  
Yozo SHOJI ◽  
Morio TOYOSHIMA ◽  
...  

Author(s):  
V. P. Koryachko ◽  
◽  
A. P. Shibanov ◽  
X. L. Fam ◽  
◽  
...  

2020 ◽  
Vol 14 ◽  
Author(s):  
Keerti Tiwari

: Multiple-input multiple-output (MIMO) systems have been endorsed to enable future wireless communication requirements. The efficient system designing appeals an appropriate channel model, that considers all the dominating effects of wireless environment. Therefore, some complex or less analytically acquiescent composite channel models have been proposed typically for single-input single-output (SISO) systems. These models are explicitly employed for mobile applications, though, we need a specific study of a model for MIMO system which can deal with radar clutters and different indoor/outdoor and mobile communication environments. Subsequently, the performance enhancement of MIMO system is also required in such scenario. The system performance enhancement can be examined by low error rate and high capacity using spatial diversity and spatial multiplexing respectively. Furthermore, for a more feasible and practical system modeling, we require a generalized noise model along with a composite channel model. Thus, all the patents related to MIMO channel models are revised to achieve the near optimal system performance in real world scenario. This review paper offers the methods to improve MIMO system performance in less and severe fading as well as shadowing environment and focused on a composite Weibull-gamma fading model. The development is the collective effects of selecting the appropriate channel models, spatial multiplexing/detection and spatial diversity techniques both at the transmitter and the receivers in the presence of arbitrary noise.


Author(s):  
Mohammad Rizk Assaf ◽  
Abdel-Nasser Assimi

In this article, the authors investigate the enhanced two stage MMSE (TS-MMSE) equalizer in bit-interleaved coded FBMC/OQAM system which gives a tradeoff between complexity and performance, since error correcting codes limits error propagation, so this allows the equalizer to remove not only ICI but also ISI in the second stage. The proposed equalizer has shown less design complexity compared to the other MMSE equalizers. The obtained results show that the probability of error is improved where SNR gain reaches 2 dB measured at BER compared with ICI cancellation for different types of modulation schemes and ITU Vehicular B channel model. Some simulation results are provided to illustrate the effectiveness of the proposed equalizer.


Sensors ◽  
2020 ◽  
Vol 20 (6) ◽  
pp. 1579
Author(s):  
Dongqi Wang ◽  
Qinghua Meng ◽  
Dongming Chen ◽  
Hupo Zhang ◽  
Lisheng Xu

Automatic detection of arrhythmia is of great significance for early prevention and diagnosis of cardiovascular disease. Traditional feature engineering methods based on expert knowledge lack multidimensional and multi-view information abstraction and data representation ability, so the traditional research on pattern recognition of arrhythmia detection cannot achieve satisfactory results. Recently, with the increase of deep learning technology, automatic feature extraction of ECG data based on deep neural networks has been widely discussed. In order to utilize the complementary strength between different schemes, in this paper, we propose an arrhythmia detection method based on the multi-resolution representation (MRR) of ECG signals. This method utilizes four different up to date deep neural networks as four channel models for ECG vector representations learning. The deep learning based representations, together with hand-crafted features of ECG, forms the MRR, which is the input of the downstream classification strategy. The experimental results of big ECG dataset multi-label classification confirm that the F1 score of the proposed method is 0.9238, which is 1.31%, 0.62%, 1.18% and 0.6% higher than that of each channel model. From the perspective of architecture, this proposed method is highly scalable and can be employed as an example for arrhythmia recognition.


Sign in / Sign up

Export Citation Format

Share Document