scholarly journals Numerical studies on electron magnetohydrodynamics tearing mode instability

AIP Advances ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 115206
Author(s):  
Wenping Guo ◽  
Jiaqi Wang ◽  
Dongjian Liu
AIP Advances ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 035212
Author(s):  
Zhen Yang ◽  
Bin Wu ◽  
Yuanlai Xie ◽  
Yuqing Chen ◽  
Hongming Zhang ◽  
...  

2022 ◽  
Author(s):  
Yue Ming ◽  
Deng Zhou ◽  
Jinfang Wang

Abstract The effect of equilibrium poloidal flow and pressure gradient on the m/n = 2/1 (m is the poloidal mode number and n is the toroidal mode number) tearing mode instability for tokamak plasmas is investigated. Based on the condition of ≠0 ( is plasma pressure), the radial part of motion equation is derived and approximately solved for large poloidal mode numbers (m). By solving partial differential equation (Whittaker equation) containing second order singularity, the tearing mode stability index Δ′ is obtained. It is shown that, the effect of equilibrium poloidal flow and pressure gradient has the adverse effect on the tearing mode instability when the pressure gradient is nonzero. The poloidal equilibrium flow with pressure perturbation partially reduces the stability of the classical tearing mode. But the larger pressure gradient in a certain poloidal flow velocity range can abate the adverse influence of equilibrium poloidal flow and pressure gradient. The numerical results do also indicate that the derivative of pressure gradient has a significant influence on the determination of instability region of the poloidal flow with pressure perturbation.


1968 ◽  
Vol 10 (12) ◽  
pp. 1101-1104 ◽  
Author(s):  
R D Gibson ◽  
K J Whiteman

1979 ◽  
Vol 3 (6) ◽  
pp. 367-368 ◽  
Author(s):  
N. F. Cramer ◽  
I. J. Donnelly

The resistive tearing mode instability is a mechanism that in some cases will render unstable a magnetohydrodynamic equilibrium of a plasma that is ideally stable, i.e. stable if no dissipative oiesses are taken into account. There is much experimental evidence that this instability is the cause of the current disruptions observed in laboratory plasma devices (von Goeler et al. 1974). In the astrophysical context, the instability has been invoked in connection with the solar flare energy release mechanism (Coppi and Friedland 1971) and the problem of the disconnection of the protostar matter from the interstellar magnetic field during star formation (Mestel 1966). In the latter problem the tearing instability gives rise to a much smaller timescale for magnetic reconnection than does ordinary resistive diffusion.


2002 ◽  
Vol 29 (16) ◽  
pp. 62-1-62-4 ◽  
Author(s):  
S.-W. Chiou ◽  
L.-N. Hau

Sign in / Sign up

Export Citation Format

Share Document