Numerical Studies of Tearing Mode Instability and Magnetic Reconnection in Anisotropic Plasma

2001 ◽  
Vol 44 (4) ◽  
pp. 435-443
Author(s):  
Ying-Juan MA ◽  
Shui WANG
AIP Advances ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 115206
Author(s):  
Wenping Guo ◽  
Jiaqi Wang ◽  
Dongjian Liu

1985 ◽  
Vol 107 ◽  
pp. 233-244
Author(s):  
E. R. Priest

Until recently magnetic reconnection in solar flares was discussed simplistically in terms of either a spontaneous tearing mode instability or a driven Petschek mode. Now the subtle relationship between these two extremes is much better understood. Current sheets may form and reconnection may be initiated in many different ways. There are also a variety of nonlinear pathways from a reconnection instability and several types of driven reconnection.In solar flares current sheets may be important as new flux emerges from below the photosphere and also as a magnetic arcade closes down after being blown open by an eruptive instability. Numerical simulations of these sheets will be described, including new features such as the presence of a fast shock in Petschek's mechanism and impulsive bursty reconnection due to secondary tearing and coalescence.


2008 ◽  
Vol 17 (10) ◽  
pp. 1715-1721 ◽  
Author(s):  
G. C. MURPHY ◽  
R. OUYED ◽  
G. PELLETIER

Magnetic reconnection plays a critical role in many astrophysical processes where high energy emission is observed, e.g. particle acceleration, relativistic accretion powered outflows, pulsar winds and probably in dissipation of Poynting flux in GRBs. The magnetic field acts as a reservoir of energy and can dissipate its energy to thermal and kinetic energy via the tearing mode instability. We have performed 3D nonlinear MHD simulations of the tearing mode instability in a current sheet. Results from a temporal stability analysis in both the linear regime and weakly nonlinear (Rutherford) regime are compared to the numerical simulations. We observe magnetic island formation, island merging and oscillation once the instability has saturated. The growth in the linear regime is exponential in agreement with linear theory. In the second, Rutherford regime the island width grows linearly with time. We find that thermal energy produced in the current sheet strongly dominates the kinetic energy. Finally preliminary analysis indicates a P(k) 4.8 power law for the power spectral density which suggests that the tearing mode vortices play a role in setting up an energy cascade.


AIP Advances ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 035212
Author(s):  
Zhen Yang ◽  
Bin Wu ◽  
Yuanlai Xie ◽  
Yuqing Chen ◽  
Hongming Zhang ◽  
...  

2022 ◽  
Author(s):  
Yue Ming ◽  
Deng Zhou ◽  
Jinfang Wang

Abstract The effect of equilibrium poloidal flow and pressure gradient on the m/n = 2/1 (m is the poloidal mode number and n is the toroidal mode number) tearing mode instability for tokamak plasmas is investigated. Based on the condition of ≠0 ( is plasma pressure), the radial part of motion equation is derived and approximately solved for large poloidal mode numbers (m). By solving partial differential equation (Whittaker equation) containing second order singularity, the tearing mode stability index Δ′ is obtained. It is shown that, the effect of equilibrium poloidal flow and pressure gradient has the adverse effect on the tearing mode instability when the pressure gradient is nonzero. The poloidal equilibrium flow with pressure perturbation partially reduces the stability of the classical tearing mode. But the larger pressure gradient in a certain poloidal flow velocity range can abate the adverse influence of equilibrium poloidal flow and pressure gradient. The numerical results do also indicate that the derivative of pressure gradient has a significant influence on the determination of instability region of the poloidal flow with pressure perturbation.


1968 ◽  
Vol 10 (12) ◽  
pp. 1101-1104 ◽  
Author(s):  
R D Gibson ◽  
K J Whiteman

2000 ◽  
Vol 7 (3/4) ◽  
pp. 141-150 ◽  
Author(s):  
T. Wiegelmann ◽  
J. Büchner

Abstract. We investigate the coupling between current and tearing instability modes of a thin current sheet using the particle code GISMO. We identify pure tearing modes (kx≠ 0), instabilities in the current flow direction (ky≠ 0) and general 3D reconnection modes (kx≠ 0 and ky≠ 0). Our results give evidence that the coupling between tearing modes and current instabilities plays an important role for spontaneous magnetic reconnection. These modes give a substantial contribution to magnetic reconnection, additional to the well known 2D tearing mode. When allowing reconnection to occur in three spatial dimensions, a configuration, which was initially invariant in the current How direction, develops into a configuration with no invariant direction.


Sign in / Sign up

Export Citation Format

Share Document