Non-equilibrium thermodynamics of light-induced transport phenomena in a binary gas mixture

2021 ◽  
Vol 33 (12) ◽  
pp. 127103
Author(s):  
I. V. Chermyaninov ◽  
V. G. Chernyak
2012 ◽  
Vol 1 (1) ◽  
pp. 48-57
Author(s):  
Baoguo Wang ◽  
Geng Qian ◽  
Ramesh K. Agarwal ◽  
Christopher D. Wilson

2012 ◽  
Vol 77 (12) ◽  
pp. 1689-1699 ◽  
Author(s):  
Zoran Petrovic ◽  
N. Puac ◽  
G. Malovic ◽  
S. Lazovic ◽  
D. Maletic ◽  
...  

We review the potential of plasma medical applications, the connections to nanotechnologies and the results obtained by our group. A special issue in plasma medicine is the development of the plasma sources that would achieve non-equilibrium at atmospheric pressure in atmospheric gas mixture with no or only marginal heating of the gas, and with desired properties and mechanisms that may be controlled. Our studies have shown that control of radicals or chemically active products of the discharge such as ROS (reactive oxygen species) and/or NO may be used to control the growth of the seeds. At the same time specially designed plasma needle and other sources were shown to be efficient to sterilize not only colonies of bacteria but also planctonic samples (microorganisms protected by water) or bio films. Finally we have shown that plasma may induce differentiation of stem cells. Non-equilibrium plasmas may be used in detection of different specific markers in medicine. For example proton transfer mass spectroscopy may be employed in detection of volatile organic compounds without their dissociation and thus as a technique for instantaneous measurement of the presence of markers for numerous diseases.


Membranes ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 286
Author(s):  
Roba M. Almuhtaseb ◽  
Ahmed Awadallah-F ◽  
Shaheen A. Al-Muhtaseb ◽  
Majeda Khraisheh

Polysulfone membranes exhibit resistance to high temperature with low manufacturing cost and high efficiency in the separation process. The composition of gases is an important step that estimates the efficiency of separation in membranes. As membrane types are currently becoming in demand for CO2/CH4 segregation, polysulfone will be an advantageous alternative to have in further studies. Therefore, research is undertaken in this study to evaluate two solvents: chloroform (CF) and tetrahydrofuran (THF). These solvents are tested for casting polymeric membranes from polysulfone (PSF) to separate every single component from a binary gas mixture of CO2/CH4. In addition, the effect of gas pressure was conducted from 1 to 10 bar on the behavior of the permeability and selectivity. The results refer to the fact that the maximum permeability of CO2 and CH4 for THF is 62.32 and 2.06 barrer at 1 and 2 bars, respectively. Further, the maximum permeability of CF is 57.59 and 2.12 barrer at 1 and 2 bars, respectively. The outcome selectivity values are 48 and 36 for THF and CF at 1 bar, accordingly. Furthermore, the study declares that with the increase in pressure, the permeability and selectivity values drop for CF and THF. The performance for polysulfone (PSF) membrane that is manufactured with THF is superior to that of CF relative to the Robeson upper bound. Therefore, through the results, it can be deduced that the solvent during in-situ synthesis has a significant influence on the gas separation of a binary mixture of CO2/CH4.


Soft Matter ◽  
2019 ◽  
Vol 15 (22) ◽  
pp. 4467-4475 ◽  
Author(s):  
Mattia Bacca ◽  
Omar A. Saleh ◽  
Robert M. McMeeking

We propose a theory based on non-equilibrium thermodynamics to describe the mechanical behavior of an active polymer gel created by the inclusion of molecular motors in its solvent.


Sign in / Sign up

Export Citation Format

Share Document