Theory and application of an integrated land-use and transport modelling framework

1993 ◽  
Vol 20 (2) ◽  
pp. 221-244 ◽  
Author(s):  
J D Hunt ◽  
D C Simmonds
2020 ◽  
Author(s):  
Calum Brown ◽  
Ian Holman ◽  
Mark Rounsevell

Abstract. Land use models operating at regional to global scales are almost exclusively based on the single paradigm of economic optimisation. Models based on different paradigms are known to produce very different results, but these are not always equivalent or attributable to particular assumptions. In this study, we compare two pan-European land use models that are based on the same integrated modelling framework and utilise the same climatic and socio-economic scenarios, but which adopt fundamentally different model paradigms. One of these is a constrained optimising economic-equilibrium model and the other is a stochastic agent-based model. We run both models for a range of scenario combinations and compare their projections of spatial and aggregate land use change and ecosystem service supply. We find that the agent-based model projects more multifunctional and heterogeneous landscapes in most scenarios, providing a wider range of ecosystem services at landscape scales, as agents make individual, time-dependent decisions that reflect economic and non-economic motivations. This tendency also results in food shortages under certain scenario conditions. The optimisation model, in contrast, maintains food supply through intensification of agricultural production in the most profitable areas, sometimes at the expense of active management in large, contiguous parts of Europe. We relate the principal differences observed to underlying model assumptions, and hypothesise that optimisation may be appropriate in scenarios that allow for coherent political and economic control of land systems, but not in scenarios where economic and other scenario conditions prevent the normal functioning of price signals and responses. In these circumstances, agent-based modelling allows explicit consideration of behavioural processes, but in doing so provides a highly flexible account of land system development that is harder to link to underlying assumptions. We suggest that structured comparisons of parallel, transparent but paradigmatically distinct models are an important method for better understanding the potential scope and uncertainties of future land use change.


Water ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 941 ◽  
Author(s):  
Dirk Mallants ◽  
Elise Bekele ◽  
Wolfgang Schmid ◽  
Konrad Miotlinski ◽  
Andrew Taylor ◽  
...  

Source-pathway-receptor analyses involving solute migration pathways through soil and shallow groundwater are typically undertaken to assess how people and the environment could come into contact with chemicals associated with coal seam gas operations. For the potential short-term and long-term release of coal seam gas fluids from storage ponds, solute concentration and dilution factors have been calculated using a water flow and solute transport modelling framework for an unsaturated zone-shallow groundwater system. Uncertainty about dilution factors was quantified for a range of system parameters: (i) leakage rates from storage ponds combined with recharge rates, (ii) a broad combination of soil and groundwater properties, and (iii) a series of increasing travel distances through soil and groundwater. Calculated dilution factors in the soil increased from sand to loam soil and increased with an increasing recharge rate, while dilution decreased for a decreasing leak rate and leak duration. In groundwater, dilution factors increase with increasing aquifer hydraulic conductivity and riverbed conductance. For a hypothetical leak duration of three years, the combined soil and groundwater dilution factors are larger than 6980 for more than 99.97% of bores that are likely to be farther than 100 m from the source. Dilution factors were more sensitive to uncertainty in leak rates than recharge rates. Based on this dilution factor, a comparison of groundwater predicted environmental concentrations and predicted no-effect concentrations for a subset of hydraulic fracturing chemicals used in Australia revealed that for all but two of the evaluated chemicals the estimated groundwater concentration (for a hypothetical water bore at 100 m from the solute source) is smaller than the no-effect concentration for the protection of aquatic ecosystems.


2020 ◽  
Author(s):  
Jose Rodriguez ◽  
Eliana Jorquera ◽  
Patricia Saco ◽  
Angelo Breda

<p>Coastal wetlands are at the interface between land and sea, receiving water, sediment and nutrients from upstream catchments and also being subject to tides, wave and changing sea levels. Analysis of their future evolution requires the analysis of the entire catchment to coast system, including the effects of climate variability and change and land use changes. We have developed a modelling framework that is able to include both catchment and coastal processes into the evolution of coastal wetlands by coupling an ecogeomorphological wetland evolution model with a hydrosedimentological catchment model to include both tidal and catchment runoff inputs. We drive the model with storm events and sea-level variations and analyse scenarios of future climate and land use for a catchment in Vanua Levu, Fiji that includes a mangrove wetland at the catchment outlet. We inform our model with field, remote sensing and historical data on land use, tides, sediment and nutrient transport and cyclone activity.</p>


Urban Studies ◽  
2018 ◽  
Vol 55 (16) ◽  
pp. 3708-3724
Author(s):  
Ming Zhong ◽  
Bilin Yu ◽  
Shaobo Liu ◽  
John Douglas Hunt ◽  
Huini Wang

Contemporary integrated land-use transport models (ILUTMs) explicitly consider interactions between floorspace demand/supply and rent at fine spatial scales, which requires a good understanding between floorspace use pattern and competition of locations among socioeconomic activities. Floorspace use patterns are usually represented by space use coefficients (SUCs) by activity type by zone, which are then used to develop theoretical space-use-rent curves (SURCs), in order to reflect the elasticity between rent and floorspace consumption rates. Literature review indicates that existing studies mostly use borrowed SUCs or subjective judgement methods for synthesising base-year floorspace and developing SURCs. In general, their accuracy is largely unknown and synthesised floorspace could be highly inaccurate. In this study, a linear programming method is proposed to estimate localised SUCs by assuming that zonal population, employment and floorspace total data are available. Study results show that the method can provide localised SUCs and better SURCs than traditional methods. It is found that, as the size of the homogeneous optimisation areas (HOAs) decreases, the accuracy of zonal space totals estimated increases considerably. For example, the estimation error between the observed and estimated zonal space totals reduces from 76.2% under the most aggregate case to 24.7% under the most disaggregate case. The sum of square errors (SSEs) between the optimised SUCs and the SURCs also reduces to about one-quarter of their original values. The method proposed contributes to a procedural process to estimate localised SUCs with known accuracy, which is proved to be a better alternative to traditional synthesis methods.


2019 ◽  
Vol 111 ◽  
pp. 459-471 ◽  
Author(s):  
Guillermo A. García ◽  
Pablo E. García ◽  
Santiago L. Rovere ◽  
Federico E. Bert ◽  
Federico Schmidt ◽  
...  

Author(s):  
G. Engelen ◽  
C. Lavalle ◽  
J.I. Barredo ◽  
M. Meulen ◽  
R. White

Sign in / Sign up

Export Citation Format

Share Document