Electric and phase behaviour of the solid system silver chloride - cadmium dichloride at high temperatures

1998 ◽  
Vol 30 (1) ◽  
pp. 113-118 ◽  
Author(s):  
Alina Wojakowska ◽  
Stanisława Plińska ◽  
Jerzy Josiak ◽  
Emil Kundys
Author(s):  
Z. L. Wang ◽  
J. Bentley

Studying the behavior of surfaces at high temperatures is of great importance for understanding the properties of ceramics and associated surface-gas reactions. Atomic processes occurring on bulk crystal surfaces at high temperatures can be recorded by reflection electron microscopy (REM) in a conventional transmission electron microscope (TEM) with relatively high resolution, because REM is especially sensitive to atomic-height steps.Improved REM image resolution with a FEG: Cleaved surfaces of a-alumina (012) exhibit atomic flatness with steps of height about 5 Å, determined by reference to a screw (or near screw) dislocation with a presumed Burgers vector of b = (1/3)<012> (see Fig. 1). Steps of heights less than about 0.8 Å can be clearly resolved only with a field emission gun (FEG) (Fig. 2). The small steps are formed by the surface oscillating between the closely packed O and Al stacking layers. The bands of dark contrast (Fig. 2b) are the result of beam radiation damage to surface areas initially terminated with O ions.


Author(s):  
D. Chrétien ◽  
D. Job ◽  
R.H. Wade

Microtubules are filamentary structures found in the cytoplasm of eukaryotic cells, where, together with actin and intermediate filaments, they form the components of the cytoskeleton. They have many functions and show various levels of structural complexity as witnessed by the singlet, doublet and triplet structures involved in the architecture of centrioles, basal bodies, cilia and flagella. The accepted microtubule model consists of a 25 nm diameter hollow tube with a wall made up of 13 paraxial protofilaments (pf). Each pf is a string of aligned tubulin dimers. Some results have suggested that the pfs follow a superhelix. To understand how microtubules function in the cell an accurate model of the surface lattice is one of the requirements. For example the 9x2 architecture of the axoneme will depend on the organisation of its component microtubules. We should also note that microtubules with different numbers of pfs have been observed in thin sections of cellular and of in-vitro material. An outstanding question is how does the surface lattice adjust to these different pf numbers?We have been using cryo-electron microscopy of frozen-hydrated samples to study in-vitro assembled microtubules. The experimental conditions are described in detail in this reference. The results obtained in conjunction with thin sections of similar specimens and with axoneme outer doublet fragments have already allowed us to characterise the image contrast of 13, 14 and 15 pf microtubules on the basis of the measured image widths, of the the image contrast symmetry and of the amplitude and phase behaviour along the equator in the computed Fourier transforms. The contrast variations along individual microtubule images can be interpreted in terms of the geometry of the microtubule surface lattice. We can extend these results and make some reasonable predictions about the probable surface lattices in the case of other pf numbers, see Table 1. Figure 1 shows observed images with which these predictions can be compared.


Sign in / Sign up

Export Citation Format

Share Document