Third-harmonic generation in a plasma formed by optical breakdown of air in the field of femtosecond laser pulses with high repetition rate

1996 ◽  
Vol 26 (4) ◽  
pp. 283-284 ◽  
Author(s):  
A K Rebane ◽  
V N Krylov ◽  
Nikolai I Koroteev ◽  
Aleksei M Zheltikov
Materials ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3194
Author(s):  
Adrian Petris ◽  
Petronela Gheorghe ◽  
Tudor Braniste ◽  
Ion Tiginyanu

The ultrafast third-order optical nonlinearity of c-plane GaN crystal, excited by ultrashort (fs) high-repetition-rate laser pulses at 1550 nm, wavelength important for optical communications, is investigated for the first time by optical third-harmonic generation in non-phase-matching conditions. As the thermo-optic effect that can arise in the sample by cumulative thermal effects induced by high-repetition-rate laser pulses cannot be responsible for the third-harmonic generation, the ultrafast nonlinear optical effect of solely electronic origin is the only one involved in this process. The third-order nonlinear optical susceptibility of GaN crystal responsible for the third-harmonic generation process, an important indicative parameter for the potential use of this material in ultrafast photonic functionalities, is determined.


Polymers ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 242 ◽  
Author(s):  
Daniel Sola ◽  
Rafael Cases

The study of laser processing of acrylic intra-ocular lenses (IOL) by using femtosecond laser pulses delivered at high-repetition rate is presented in this work. An ultra-compact air-cooled femtosecond diode laser (HighQ2-SHG, Spectra-Physics) delivering 250 fs laser pulses at the fixed wavelength of 520 nm with a repetition rate of 63 MHz was used to process the samples. Laser inscription of linear periodic patterns on the surface and inside the acrylic substrates was studied as a function of the processing parameters as well as the optical absorption characteristics of the sample. Scanning Electron Microscopy (SEM) Energy Dispersive X-ray Spectroscopy (EDX), and micro-Raman Spectroscopy were used to evaluate the compositional and microstructural changes induced by the laser radiation in the processed areas. Diffractive characterization was used to assess 1st-order efficiency and the refractive index change.


2010 ◽  
Vol 108 (7) ◽  
pp. 073533 ◽  
Author(s):  
Masahiro Shimizu ◽  
Masaaki Sakakura ◽  
Masatoshi Ohnishi ◽  
Yasuhiko Shimotsuma ◽  
Takayuki Nakaya ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document