Application of the artificial neural network for reconstructing the internal-structure image of a random medium by spatial characteristics of backscattered optical radiation

2008 ◽  
Vol 38 (6) ◽  
pp. 576-579
Author(s):  
B A Veksler ◽  
I V Meglinskii
2021 ◽  
Vol 3 (1) ◽  
pp. 30-36
Author(s):  
A. G. Kazarian ◽  
◽  
V. M. Teslyuk ◽  
I. Ya. Kazymyra ◽  
◽  
...  

A method for optimal structure selection of hidden layers of the artificial neural network (ANN) is proposed. Its main idea is the practical application of several internal structures of ANN and further calculation of the error of each hidden layer structure using identical data sets for ANN training. The method is based on the alternate comparison of the expected result values and the actual results of the feedforward artificial neural networks with a different number of inner layers and a different number of neurons on each layer. The method afforces searching the optimal internal structure of ANN for usage in the development of "smart" house systems and for calculation of the optimal energy consumption level in accordance with current conditions, such as room temperature, presence of people, and time of the day. The usage of the presented method allows to reduce the time spent on choosing the effective structure of the artificial neural network at the initial stages of research and to pay more attention to the relationship between the input and output data, as well as to such important parameters of the ANN learning process, as a number of training iterations, minimal training error, etc. The software has been developed that allows to carry out the processes of training, testing, and obtaining the output results of the algorithm of the artificial neural network, such as the expected value of power consumption and operating time of each individual appliance. The disadvantage of the approach used in finding the optimal internal structure of the artificial neural network is that each subsequent structure is created on the basis of the most efficient of the previously created structures without analyzing other structures that showed worse results with fewer hidden layers. It was found that to improve the solution of this problem it is necessary to create a mechanism which will be based on the analysis of input data, output data, will analyze the internal relationships between parameters and will optimize the network structure at each stage using certain logical rules according to the results obtained in the previous step. It is established that this problem is a nonlinear programming problem that can be solved in the further development of this study.


2000 ◽  
Vol 25 (4) ◽  
pp. 325-325
Author(s):  
J.L.N. Roodenburg ◽  
H.J. Van Staveren ◽  
N.L.P. Van Veen ◽  
O.C. Speelman ◽  
J.M. Nauta ◽  
...  

2004 ◽  
Vol 171 (4S) ◽  
pp. 502-503
Author(s):  
Mohamed A. Gomha ◽  
Khaled Z. Sheir ◽  
Saeed Showky ◽  
Khaled Madbouly ◽  
Emad Elsobky ◽  
...  

1998 ◽  
Vol 49 (7) ◽  
pp. 717-722 ◽  
Author(s):  
M C M de Carvalho ◽  
M S Dougherty ◽  
A S Fowkes ◽  
M R Wardman

2020 ◽  
Vol 39 (6) ◽  
pp. 8463-8475
Author(s):  
Palanivel Srinivasan ◽  
Manivannan Doraipandian

Rare event detections are performed using spatial domain and frequency domain-based procedures. Omnipresent surveillance camera footages are increasing exponentially due course the time. Monitoring all the events manually is an insignificant and more time-consuming process. Therefore, an automated rare event detection contrivance is required to make this process manageable. In this work, a Context-Free Grammar (CFG) is developed for detecting rare events from a video stream and Artificial Neural Network (ANN) is used to train CFG. A set of dedicated algorithms are used to perform frame split process, edge detection, background subtraction and convert the processed data into CFG. The developed CFG is converted into nodes and edges to form a graph. The graph is given to the input layer of an ANN to classify normal and rare event classes. Graph derived from CFG using input video stream is used to train ANN Further the performance of developed Artificial Neural Network Based Context-Free Grammar – Rare Event Detection (ACFG-RED) is compared with other existing techniques and performance metrics such as accuracy, precision, sensitivity, recall, average processing time and average processing power are used for performance estimation and analyzed. Better performance metrics values have been observed for the ANN-CFG model compared with other techniques. The developed model will provide a better solution in detecting rare events using video streams.


Sign in / Sign up

Export Citation Format

Share Document