Topological classification of billiards bounded by confocal quadrics in a three-dimensional Euclidean space

2022 ◽  
Vol 213 (2) ◽  
Author(s):  
Gleb Vladimirovich Belozerov
2014 ◽  
Vol 57 (1) ◽  
pp. 131-141 ◽  
Author(s):  
S. MONTALDO ◽  
A. RATTO

AbstractWe develop an essentially algebraic method to study biharmonic curves into an implicit surface. Although our method is rather general, it is especially suitable to study curves in surfaces defined by a polynomial equation: In particular, we use it to give a complete classification of biharmonic curves in real quadrics of the three-dimensional Euclidean space.


Author(s):  
M. N. Boldyreva ◽  
A. A. Magazev ◽  
I. V. Shirokov

In the paper, we investigate the gauge fields that are characterized by the existence of non-trivial integrals of motion for the Wong equations. For the gauge group 𝑆𝑈(2), the class of fields admitting only the isospin first integrals is described in detail. All gauge non-equivalent Yang–Mills fields admitting a linear integral of motion for the Wong equations are classified in the three-dimensional Euclidean space


2014 ◽  
Vol 70 (4) ◽  
pp. 319-337 ◽  
Author(s):  
S. T. Hyde ◽  
S. J. Ramsden ◽  
V. Robins

The concept of an orbifold is particularly suited to classification and enumeration of crystalline groups in the euclidean (flat) plane and its elliptic and hyperbolic counterparts. Using Conway's orbifold naming scheme, this article explicates conventional point, frieze and plane groups, and describes the advantages of the orbifold approach, which relies on simple rules for calculating the orbifold topology. The article proposes a simple taxonomy of orbifolds into seven classes, distinguished by their underlying topological connectedness, boundedness and orientability. Simpler `crystallographic hyperbolic groups' are listed, namely groups that result from hyperbolic sponge-like sections through three-dimensional euclidean space related to all known genus-three triply periodic minimal surfaces (i.e.theP,D,Gyroid,CLPandHsurfaces) as well as the genus-fourI-WPsurface.


2008 ◽  
Vol 17 (4) ◽  
pp. 619-625 ◽  
Author(s):  
JÓZSEF SOLYMOSI ◽  
CSABA D. TÓTH

Given a set of s points and a set of n2 lines in three-dimensional Euclidean space such that each line is incident to n points but no n lines are coplanar, we show that s = Ω(n11/4). This is the first non-trivial answer to a question recently posed by Jean Bourgain.


1956 ◽  
Vol 8 ◽  
pp. 256-262 ◽  
Author(s):  
J. De Groot

1. Introduction. We consider the group of proper orthogonal transformations (rotations) in three-dimensional Euclidean space, represented by real orthogonal matrices (aik) (i, k = 1,2,3) with determinant + 1 . It is known that this rotation group contains free (non-abelian) subgroups; in fact Hausdorff (5) showed how to find two rotations P and Q generating a group with only two non-trivial relationsP2 = Q3 = I.


Robotica ◽  
2015 ◽  
Vol 34 (11) ◽  
pp. 2610-2628 ◽  
Author(s):  
Davood Naderi ◽  
Mehdi Tale-Masouleh ◽  
Payam Varshovi-Jaghargh

SUMMARYIn this paper, the forward kinematic analysis of 3-degree-of-freedom planar parallel robots with identical limb structures is presented. The proposed algorithm is based on Study's kinematic mapping (E. Study, “von den Bewegungen und Umlegungen,” Math. Ann.39, 441–565 (1891)), resultant method, and the Gröbner basis in seven-dimensional kinematic space. The obtained solution in seven-dimensional kinematic space of the forward kinematic problem is mapped into three-dimensional Euclidean space. An alternative solution of the forward kinematic problem is obtained using resultant method in three-dimensional Euclidean space, and the result is compared with the obtained mapping result from seven-dimensional kinematic space. Both approaches lead to the same maximum number of solutions: 2, 6, 6, 6, 2, 2, 2, 6, 2, and 2 for the forward kinematic problem of planar parallel robots; 3-RPR, 3-RPR, 3-RRR, 3-RRR, 3-RRP, 3-RPP, 3-RPP, 3-PRR, 3-PRR, and 3-PRP, respectively.


Sign in / Sign up

Export Citation Format

Share Document