implicit surface
Recently Published Documents


TOTAL DOCUMENTS

179
(FIVE YEARS 35)

H-INDEX

21
(FIVE YEARS 3)

2021 ◽  
Vol 14 (10) ◽  
pp. 6197-6213
Author(s):  
Lachlan Grose ◽  
Laurent Ailleres ◽  
Gautier Laurent ◽  
Guillaume Caumon ◽  
Mark Jessell ◽  
...  

Abstract. Without properly accounting for both fault kinematics and observations of a faulted surface, it is challenging to create 3D geological models of faulted geological units. Geometries where multiple faults interact, where the faulted surface geometry significantly deviate from a flat plane and where the geological interfaces are poorly characterised by sparse datasets are particular challenges. There are two existing approaches for incorporating faults into geological surface modelling. One approach incorporates the fault displacement into the surface description but does not incorporate fault kinematics and in most cases will produce geologically unexpected results such as shrinking intrusions, fold hinges without offset and layer thickness growth in flat oblique faults. The second approach builds a continuous surface without faulting and then applies a kinematic fault operator to the continuous surface to create the displacement. Both approaches have their strengths; however, neither approach can capture the interaction of faults within complicated fault networks, e.g. fault duplexes, flower structures and listric faults because they either (1) impose an incorrect (not defined by data) fault slip direction or (2) require an over-sampled dataset that describes the faulted surface location. In this study, we integrate the fault kinematics into the implicit surface, by using the fault kinematics to restore observations, and the model domain prior to interpolating the faulted surface. This new approach can build models that are consistent with observations of the faulted surface and fault kinematics. Integrating fault kinematics directly into the implicit surface description allows for complexly faulted stratigraphy and fault–fault interactions to be modelled. Our approach shows significant improvement in capturing faulted surface geometries, especially where the intersection angle between the faulted surface and the fault surface varies (e.g. intrusions, fold series) and when modelling interacting faults (fault duplex).


Mathematics ◽  
2021 ◽  
Vol 9 (18) ◽  
pp. 2207 ◽  
Author(s):  
Benyu Li ◽  
Deyun Zhong ◽  
Liguan Wang

In this paper, we present a multi-domain implicit surface reconstruction algorithm for geological modeling based on the labeling of voxel points. The improved algorithm sets a label for each voxel point to represent the type of its geological domain and then obtains all the voxel points in the void areas. After that, the improved algorithm modifies the labels of the voxel points in the void areas and finally reconstructs the geological models through the Multiple Material Marching Cubes (M3C) algorithm. The improved algorithm solves the problems of some unexpected overlaps and voids in geological modeling by setting and modifying the labels of the voxel points. Our key contribution is proposing a labeling processing method to repair the overlap and void defects generated in the geological modeling and realizing the improved M3C algorithm. The experimental results of some geological models show the performance of the improved method. Compared with the original method, the improved method can repair the overlap and void defects in geological modeling to ensure the raw structural adjacency relationships of the geological bodies.


Author(s):  
Chun Bai ◽  
Guangshuai Liu ◽  
Xurui Li ◽  
Ruoyu Li ◽  
Si Sun

2021 ◽  
Vol 40 (5) ◽  
pp. 143-156
Author(s):  
Tong Zhao ◽  
Pierre Alliez ◽  
Tamy Boubekeur ◽  
Laurent Busé ◽  
∗ Jean‐Marc Thiery

Author(s):  
Qi Zhang

Raycasting can display volumetric medical data in fine details and reveal crucial inner imaging information, while implicit surface is able to effectively model complex objects with high flexibility, combining these two rendering modalities together will provide comprehensive information of the scene and has wide applications in surgical simulation, image-guided intervention, and medical training. However, medical data rendering is based on texture depth at every sampling point, while mathematically modeled implicit surfaces do not have geometric information in texture space. It is a challenging task to visualize both physical scalar data and virtual implicit surfaces simultaneously. To address this issue, in this paper, we present a new dual-casting ray-based double modality data rendering algorithm and web-based software platform to visualize volumetric medical data and implicit surface in the same browser. The algorithm runs on graphics processing unit and casts two virtual rays from camera to each pixel on the display panel, where one ray travels through the mathematically defined scene for implicit surface rendering and the other one passes the 3D texture space for volumetric data visualization. The proposed algorithm can detect voxel depth information and algebraic surface models along each casting ray and dynamically enhance the visualized dual-modality data with the improved lighting model and transparency adjustment function. Moreover, auxiliary innovative techniques are also presented to enhance the shading and rendering features of interest. Our software platform can seamlessly visualize volumetric medical data and implicit surfaces in the same web browser over Internet.


2021 ◽  
Vol 15 ◽  
Author(s):  
Jiahui Mo ◽  
Huahao Shou ◽  
Wei Chen

Background: Implicit surface is a kind of surface modeling tool, which is widely used in point cloud reconstruction, deformation, and fusion due to its advantages of good smoothness and Boolean operation. The most typical method is surface reconstruction with radial basis functions (RBF) under normal constraints. RBF has become one of the main methods of point cloud fitting because it has a strong mathematical foundation, an advantage of computation simplicity, and the ability to process nonuniform points. Objective: Techniques and patents of implicit surface reconstruction interpolation with RBF are surveyed. Theory, algorithm, and application are discussed to provide a comprehensive summary for implicit surface reconstruction in RBF and Hermite radial basis functions (HRBF) interpolation. Methods: RBF implicit surface reconstruction interpolation can be divided into RBF interpolation under the constraints of points and HRBF interpolation under the constraints of points and corresponding normals. Results: A total of 125 articles were reviewed in which more than 30% were related to RBF in the last decade. The continuity properties and application fields of the popular globally supported radial basis functions and compactly supported radial basis functions are analyzed. Different methods of RBF and HRBF implicit surface reconstruction are evaluated, and the challenges of these methods are discussed. Conclusion: In future work, implicit surface reconstruction via RBF and HRBF should be further studied for fitting accuracy, computation speed, and other fundamental problems. In addition, it is a more challenging but valuable research direction to construct a new RBF with both compact support and improved fitting accuracy.


2021 ◽  
Author(s):  
Lachlan Grose ◽  
Laurent Ailleres ◽  
Gautier Laurent ◽  
Guillaume Caumon ◽  
Mark Jessell ◽  
...  

Abstract. Without properly accounting for both fault kinematics and faulted surface observations, it is challenging to create 3D geological models of faulted geological units that are seen in all tectonic settings. Geometries where multiple faults interact, where the faulted surface geometry significantly deviate from a flat plane and where the geological interfaces are poorly characterised by sparse data sets are particular challenges. There are two existing approaches for incorporating faults into geological surface modelling: one approach incorporates the fault displacement into the surface description but does not incorporate fault kinematics and in most cases will produce geologically unexpected results such as shrinking intrusions, fold hinges without offset and layer thickness growth in flat oblique faults. Another approach builds a continuous surface without faulting and then applies a kinematic fault operator to the continuous surface to create the displacement. Both approaches have their strengths, however neither approach can capture the interaction of faults within complicated fault networks e.g fault duplexes, flower structures and listric faults because they either \\begin{inparaenum}[(1)] \\item impose an incorrect (not defined by data) fault slip direction; or \\item require an over sampled data set that describes the faulted surface location\\end{inparaenum}. In this study we integrate the fault kinematics into the implicit surface by using the fault kinematic model to restore observations and the model domain prior to interpolating the faulted surface. This approach can build models that are consistent with observations of the faulted surface and fault kinematics. Integrating fault kinematics directly into the implicit surface description allows for complex fault stratigraphy and fault-fault interactions to be modelled. Our approaches show significant improvement in capturing faulted surface geometries especially where the intersection angle between the faulted surface geometry and the fault surface varies (e.g. intrusions, fold series) and when modelling interacting faults (fault duplex).


2021 ◽  
Author(s):  
Jingxian Xu ◽  
Yangfan Chen ◽  
Hao Yuan ◽  
Hengzhi Gu ◽  
Zhen Xu ◽  
...  

2021 ◽  
Vol 40 (2) ◽  
pp. 1-17
Author(s):  
Egor Larionov ◽  
Ye Fan ◽  
Dinesh K. Pai

Frictional contact between deformable elastic objects remains a difficult simulation problem in computer graphics. Traditionally, contact has been resolved using sophisticated collision detection schemes and methods that build on the assumption that contact happens between polygons. While polygonal surfaces are an efficient representation for solids, they lack some intrinsic properties that are important for contact resolution. Generally, polygonal surfaces are not equipped with an intrinsic inside and outside partitioning or a smooth distance field close to the surface. Here we propose a new method for resolving frictional contacts against deforming implicit surface representations that addresses these problems. We augment a moving least squares (MLS) implicit surface formulation with a local kernel for resolving contacts, and develop a simple parallel transport approximation to enable transfer of frictional impulses. Our variational formulation of dynamics and elasticity enables us to naturally include contact constraints, which are resolved as one Newton-Raphson solve with linear inequality constraints. We extend this formulation by forwarding friction impulses from one time step to the next, used as external forces in the elasticity solve. This maintains the decoupling of friction from elasticity thus allowing for different solvers to be used in each step. In addition, we develop a variation of staggered projections, that relies solely on a non-linear optimization without constraints and does not require a discretization of the friction cone. Our results compare favorably to a popular industrial elasticity solver (used for visual effects), as well as recent academic work in frictional contact, both of which rely on polygons for contact resolution. We present examples of coupling between rigid bodies, cloth and elastic solids.


Sign in / Sign up

Export Citation Format

Share Document