Unconventional petroleum resource evaluation in Queensland

2013 ◽  
Vol 53 (2) ◽  
pp. 471
Author(s):  
Alison Troup ◽  
Melanie Fitzell ◽  
Sally Edwards ◽  
Owen Dixon ◽  
Gopalakrishnan Suraj

The search for unconventional petroleum resources requires a shift in the way the petroleum potential of sedimentary basins is assessed. Gas in source rocks and tight reservoirs has largely been ignored in preference for traditional conventional gas plays. Recent developments in technology now allow for the extraction of gas trapped in low-permeability reservoirs. Assessments of the unconventional petroleum potential of basins, including estimates of the potential resource are required to guide future exploration. The Geological Survey of Queensland is collaborating with Geoscience Australia (GA) and other state agencies to undertake regional assessments of several basins with potential for unconventional petroleum resources in Queensland. The United States Geological Survey methodology for assessment of continuous petroleum resources is being adopted to estimate total undiscovered oil and gas resources. Assessments are being undertaken to evaluate the potential of key formations as shale oil and gas and tight-gas plays. The assessments focus on mapping key attributes including depth, thickness, maturity, total organic carbon (TOC), porosity, gas content, reservoir pressure, mineralogy and regional facies patterns using data from stratigraphic bores and petroleum wells to determine play fairways or areas of greatest potential. More detailed formation evaluation is being undertaken for a regional framework of wells using conventional log suites and mudlogs to calculate porosity, TOC, maturity, oil and gas saturations, and gas composition. HyLoggerTM data is being used to determine its validity to estimate bulk mineralogy (clay-carbonate-quartz) compared with traditional x-ray diffraction methods. These methods are being applied to key formations with unconventional potential in the Georgina and Eromanga basins in Queensland.

Author(s):  
V. Yu. Kerimov ◽  
Yu. V. Shcherbina ◽  
A. A. Ivanov

Introduction. To date, no unified well-established concepts have been developed regarding the oil and gas geological zoning of the Laptev Sea shelf, as well as other seas of the Eastern Arctic. Different groups of researchers define this region either as an independently promising oil and gas region [7, 8], or as a potential oil and gas basin [1].Aim. To construct spatio-temporal digital models of sedimentary basins and hydrocarbon systems for the main horizons of oil and gas source rocks. A detailed analysis of information on oil and gas content, the gas chemical study of sediments, the characteristics of the component composition and thermal regime of the Laptev sea shelf water area raises the question on the conditions for the formation and evolution of oil and gas source strata within the studied promising oil and gas province. The conducted research made it possible to study the regional trends in oil and gas content, the features of the sedimentary cover formation and the development of hydrocarbon systems in the area under study.Materials and methods. The materials of production reports obtained for individual large objects in the water area were the source of initial information. The basin analysis was based on a model developed by Equinor specialists (Somme et al., 2018) [14—17], covering the time period from the Triassic to Paleogene inclusive and taking into account the plate-tectonic reconstructions. The resulting model included four main sedimentary complexes: pre-Aptian, Apt-Upper Cretaceous, Paleogene, and Neogene-Quaternary.Results. The calculation of numerical models was carried out in two versions with different types of kerogen from the oil and gas source strata corresponding to humic and sapropel organic matter. The results obtained indicated that the key factor controlling the development of hydrocarbon systems was the sinking rate of the basins and the thickness of formed overburden complexes, as well as the geothermal field of the Laptev Sea.Conclusion. The analysis of the results obtained allowed the most promising research objects to be identified. The main foci of hydrocarbon generation in the Paleogene and Neogene complexes and the areas of the most probable accumulation were determined. Significant hydrocarbon potential is expected in the Paleogene clinoforms of the Eastern Arctic.


2019 ◽  
Vol 489 (3) ◽  
pp. 272-276
Author(s):  
V. A. Kontorovich ◽  
A. E. Kontorovich

On the Kara Sea shelf, there are two sedimentary basins separated by the North-Siberian sill. Tectonically the southern part of the Kara Sea covers the South Kara regional depression, which is the northern end of the West Siberian geosyncline. This part of the water area is identified as part of the South Kara oil and gas region, within which the Aptian-Albian-Senomanian sedimentary complex is of greatest interest in terms of gas content, in terms of liquid hydrocarbons - Neocomian and Jurassic deposits. The northern part of the Kara Sea is an independent North Kara province, for the most part of which the prospects of petroleum potential are associated with Paleozoic sedimentary complexes. Oil and gas perspective objects of this basin may be associated with anticlinal, non-structural traps and reef structures.


Sign in / Sign up

Export Citation Format

Share Document