Will genetics offer a permanent solution to breech strike?

2010 ◽  
Vol 50 (12) ◽  
pp. 1053 ◽  
Author(s):  
J. S. Richards ◽  
K. D. Atkins

There are several options for managing flystrike other than mulesing. Breeding for plainer animals that do not require mulesing is an attractive, permanent long-term solution. Breech wrinkle is the key predisposing factor for breech and tail strike. Little effort has been made to reduce wrinkle score in sheep because mulesing was so successful and because there is a perception that reducing wrinkle score will reduce fleece weight. Fleece weight will be reduced if single-trait selection for wrinkle is applied, but if breech wrinkle is included in an index, the negative effect of wrinkle on other production traits can be minimised using the same method as that used to accommodate the negative correlation between fibre diameter and fleece weight. Breeding programs for reduced breech wrinkle should be used in combination with short-term tactical management strategies, especially during the initial stages of the breeding program. The need for tactical management will decrease as the program progresses. This approach can be applied using information that can be recorded easily and at low cost.


2008 ◽  
Vol 48 (9) ◽  
pp. 1186 ◽  
Author(s):  
A. E. Huisman ◽  
D. J. Brown

The Australian Merino is the predominant genetic resource for both the prime lamb and sheep meat industries of Australia. There are very few studies that provide good information on the relationships between wool and non-wool traits. The objective of this paper was to describe genetic relationships within bodyweight traits and between bodyweight and other traits recorded in Merino sheep. The genetic correlation between bodyweight, fleece weight and fibre diameter was positive (0.1 to 0.2). While fibre diameter coefficient of variation, staple length, staple strength, mean fibre curvature, and faecal egg count were not correlated with bodyweight. Scrotal circumference (0.4), number of lambs born (0.1), and number of lambs weaned (0.1) were positively correlated with bodyweight. Results indicate that selection for an increase in bodyweight will have a positive effect on eye muscle depth, fleece weight, and reproduction traits, while selection for an increase in bodyweight will have a negative effect on fibre diameter and fibre diameter coefficient of variation.



2001 ◽  
Vol 72 (2) ◽  
pp. 241-250 ◽  
Author(s):  
T. Wuliji ◽  
K. G. Dodds ◽  
J. T. J. Land ◽  
R. N. Andrews ◽  
P. R. Turner

AbstractMerino yearling records from 1988 to 1992 birth years in ultrafine wool selection and random control flocks at Tara Hills High Country Station, New Zealand were analysed for live weight, fleece weight and wool characteristics. Estimates of heritability, genetic and phenotypic correlations among traits using REML methods are presented. Heritabilities (h2) of birth, weaning, autumn, spring and summer live weights and greasy and clean fleece weights were estimated as being 0·35, 0·34, 0·44, 0·43, 0·49, 0·24 and 0·28 respectively; while h2 of yield, fibre diameter, coefficient of variation in fibre diameter, staple crimp, staple length, staple strength, position of break, resistance to compression, bulk, CIE Y and CIE Y-Z were estimated to be 0·58, 0·59, 0·60, 0·45, 0·71, 0·13, 0·18, 0·46, 0·38, 0·38 and 0·42 respectively. Genetic correlations were found to be high among the live weights but low to moderate among fleece weight and wool characteristics. Heritability estimates of fibre diameter, fibre diameter variation and staple length were found to be higher in New Zealand fine wool Merinos than most of those reported in the literature. The results indicate that selection for reduced fibre diameter will have little effect on other major production traits such as live weight and fleece weight.



1998 ◽  
Vol 49 (8) ◽  
pp. 1201 ◽  
Author(s):  
S. J. Eady ◽  
R. R. Woolaston ◽  
R. W. Ponzoni ◽  
R. P. Lewer ◽  
H. W. Raadsma ◽  
...  

Merino sheep representing a range of bloodlines in resource flocks located across Australia were tested for resistance to gastro-intestinal nematodes. These flocks included the JB Pye Flock (Camden, NSW), Katanning Base Flock (Katanning, WA), Turretfield Merino Resource Flock (Rosedale, SA), and the CSIRO Finewool Flock (Armidale, NSW) and included a total of 328 sire groups. Resistance to nematodes was measured by faecal egg count (FEC). Data were also available for greasy and clean fleece weight (GFW and CFW, respectively), fibre diameter (FD), and body weight (BW) at a range of ages from weaning to 21 months. Variance components were estimated by restricted maximum likelihood, fitting an animal model and estimating covariances in a series of bivariate analyses. Phenotypic correlations between FEC0·33 and production traits were all close to zero ( –0·09–0·02). Genetic correlations between FEC0·33 and production traits were –0·20, –0·18, and –0·26 for weaning weight, 10-month BW, and 16-month BW, respectively; 0·21, –0·06, and 0·21 for 10-month GFW, 16-month GFW, and 21-month GFW; 0·21, –0·05, and 0·07 for 10-month CFW, 16-month CFW, and 21-month CFW; and –0·09, –0·12, and 0·04 for 10-month FD, 16-month FD, and 21-month FD. When estimates were pooled for all fleece traits and all BW traits, the genetic correlations between FEC0·33 and GFW, CFW, FD, and BW were 0·15, 0·10, –0·06, and –0·21, respectively. Using pooled estimates for CFW, FD, and BW, selection for a breeding objective based on production traits alone would lead to an unfavourable correlated response in FEC0·33 of approximately 1% per year.



1970 ◽  
Vol 21 (5) ◽  
pp. 837 ◽  
Author(s):  
N Jackson ◽  
JW James

Data from two-tooth rams and ewes representing seven Australian Merino studs were analysed to provide estimates of between-stud genetic variances and between-stud genetic correlations for 20 wool and body traits. The estimates were used to compare two methods of choosing foundation animals for a new stud: selection within one stud or selection within each of several studs. Where only one trait was considered in selection, and provided that accurate estimates of stud mean breeding values were available, selection from a single stud was superior, although there were some differences between traits in the degree of superiority. Where more than one trait was considered the conclusion depended on the relative magnitudes and signs of the between and within-stud genetic and phenotypic correlations. In the particular case of selection for high clean fleece weight and fine fibre diameter, a strong unfavourable between-stud genetic correlation shifted the emphasis more toward selection from several studs, but selection from a single stud was still superior when accurate estimates of stud mean breeding values for clean fleece weight were available. When response to subsequent selection, as well as immediate gain in choice of founders, was considered, the conclusions were reversed. For a single trait, selection from several studs was always superior in the long term (three or more generations), and also in the short term when accurate estimates of stud mean breeding values were not available.



1994 ◽  
Vol 34 (6) ◽  
pp. 717 ◽  
Author(s):  
KA Rathie ◽  
ML Tierney ◽  
JC Mulder

Wiltshire Horn-Merino (WH-M) crosses of 1/2, 5/8 and 3/4 Merino content were compared over 10 years for wool shedding, blowfly strike frequency and wool production traits. Merinos and 1/2 Merino WH-M were compared over 4 years. For wool production traits, 1/2 and 5/8 Merino WH-M ewes were compared to Border Leicester-Merino (BL-M) ewes over 2 years. Shedding increased with age for all WH-M genotypes, with 3/4 Merinos showing less shedding than 1/2 Merinos at all ages. At 1 and 2 years of age, 5/8 Merinos were intermediate between the other 2 WH-M genotypes, but at later ages they were similar to 1/2 Merinos. All genotypes showed less shedding at the belly site than the head, neck and breech as lambs, but not at older ages. Phenotypic correlations between sites on the same sheep were high, averaging 0.85. Repeatability estimates for each site ranged from 0.26 to 0.45. Shedding increased most with age in the 1/2 Merinos, and least in the 3/4 Merinos. Little or no shoulder and back wool was shed by most sheep. All 1/2 and 5/8 Merinos and most 3/4 Merinos had bare legs and points. Blowfly strike incidence was far higher in Merinos than 1/2 Merinos, in all years. Among WH-M, blowfly strike incidence increased as Merino content increased, in all years. All WH-M were far inferior to both Merinos and BL-M in total greasy wool weight and all its components, and also in clean fleece weight, with their level of inferiority increasing as their Merino content declined. Wool fibre diameter for all WH-M was coarser than for Merinos, but was a little finer than for BL-M. Fibre diameter increased in the WH-M as their Merino content declined. All WH-M had lower wool yields than the Merinos or BL-M. In some years the 314 Merinos had lower wool yields than the 1/2 and 5/8 Merinos, which were similar in all years. Shedding caused numerous genotype x age interactions in wool weight and its components, as Merinos and BL-M did not shed, and with the WH-M shedding increased most with age in the 1/2 Merinos, and least in the 3/4 Merinos. Due to preferential shedding from the belly and other low-value areas, the WH-M inferiority in total wool weight was less severe for fleece weight. Winter shearing succeeded in harvesting some wool from WH-M that would be shed before a summer shearing, but not enough to alter rankings among genotypes. All WH-M genotypes have wool too coarse, and not enough of it, to compete as a wool sheep with the Merino at current wool prices under usual Australian pastoral conditions. In areas where mustering is difficult or blowfly strike unusually severe, WH-M genotypes may find a niche.



2000 ◽  
Vol 70 (1) ◽  
pp. 17-27 ◽  
Author(s):  
C. A. Morris ◽  
A. Vlassoff ◽  
S. A. Bisset ◽  
R. L. Baker ◽  
T. G. Watson ◽  
...  

AbstractDivergent breeding lines of Romney sheep, selected as lambs for consistently high or low faecal worm egg count (FEC) following natural multi-species challenge by nematode parasites, were established in New Zealand at Wallaceville Animal Research Centre in 1979 and at Rotomahana Station in 1985. In 1988 the Rotomahana lines, including an unselected control line maintained under the same management conditions, were transferred to Tokanui Station where they remained for 4 years. In 1993 elite high and low FEC animals from Tokanui, along with the controls, were transferred to Wallaceville, where merged lines have since been managed together. Selection responses from the lines at Rotomahana and Tokanui, and from a further 5 years of divergent selection in the merged lines, are reported here. For the two most recent lamb crops (1996 and 1997 birth years), log-transformed FECs of the high and low lines were 1·27 and -1·46 phenotypic standard deviation units from the control. After back-transformation to the original scale, where the FEC for control line lambs averaged 1255 eggs per g, the means for the high and low lines were 3Ό5 and 0·27 times the control mean. Animal-model restricted maximum likelihood estimates of her it ability and repeatability for single-record FEC (following separate infections) were 0·28 (s.e. 0·02) and 0·42 (s.e. 0Ό1), respectively. Correlated responses in production traits include significantly decreased post-weaning weight gain and increased dags (breech soiling) in lambs, and decreased fleece weight in yearlings and ewes in the low FEC line, compared with those in the high line. However the low FEC line had proportionally 0·11 more lambs weaned per ewe mated than the high FEC line (F < 0·01). It is concluded firstly that selection for high or low FEC in Romney s has achieved an 11-fold difference between the divergent lines. Secondly, it will generally be necessary in a commercial environment to apply index selection for a combination of increased productivity, decreased FEC and possibly decreased dags, when potential candidates are recorded under conditions of nematode challenge.



2019 ◽  
Vol 35 (4) ◽  
pp. 323-334
Author(s):  
Goran Vuckovic ◽  
Tina Bobic ◽  
Pero Mijic ◽  
Mirna Gavran ◽  
Klemen Potocnik ◽  
...  

Aiming determination of the variability of production traits (daily milk yield and composition) and microclimate parameters (ambient temperature and humidity) in the barns; as well as the correlation between the analyzed groups of traits, 1,636,192 test-day records from Simmentals and 1,275,713 test-day records from Holsteins were analysed. Performed analysis indicate high variability of production traits due to cow?s breed, parity as well as breeding region. Also, high variability of microclimate parameters in the barns due to season and breeding region was found. Furthermore, statistically highly significant (p < 0.001) correlations between the production traits and microclimate parameters were determined. Finally, the negative effect of inadequate microclimate on daily milk production was determined in both breeds in all breeding regions. Since genetic evaluation and selection of dairy cattle for heat resistance is only long-term method for heat stress managing, determined effect will be taken into account in the statistical model for estimation of genetic parameters and breeding values.



2008 ◽  
Vol 16 (2) ◽  
pp. 124 ◽  
Author(s):  
M-L. PUNTILA ◽  
K. MÄKI ◽  
A. NYLANDER

Genetic parameters were estimated for wool characteristics of white and coloured Finnsheep. The data consisted of 5 309 lambs from ordinary production flocks, the Finnsheep nucleus flock and a breeding flock. The variance component estimation was done applying REML analyses. Wool traits included fleece uniformity, density, staple formation, lustre, crimp frequency, fineness grade and staple length. There was a smaller dataset that contained also lamb live weight, greasy fleece weight and additional fleece characteristics including fibre diameter measured with the OFDA method. The variance components for direct and maternal effects were estimated using bivariate analysis for 42-day, 120-day weight and greasy fleece weight. Heritability for visually assessed wool characteristics varied from 0.23 to 0.43 and for measured traits from 0.45 to 0.62. Staple length had a high negative genetic correlation with crimp frequency and fineness grade. Heritability of greasy fleece weight was high (0.55) and that of fibre diameter 0.62. The genetic correlation between crimp frequency and fibre diameter was negative (- 0.56). The results imply that the assessed traits are useful indicators for fleece quality and those of major importance can be introduced into the breeding programme. The results suggest that there is no antagonism in selection for both growth capacity and wool quantity.;



1998 ◽  
Vol 49 (8) ◽  
pp. 1195 ◽  
Author(s):  
M. V. Benavides ◽  
A. P. Maher ◽  
M. J. Young ◽  
P. R. Beatson ◽  
T. C. Reid

The potential for the reduction of wool yellowing susceptibility (YPC) in Corriedale sheep via selection was examined. The heritabilities of YPC and greasy fleece weight (GFW) and clean fleece weight (CFW), yield percentage (Yield), mean fibre diameter (MFD), and subjective greasy wool colour assessment (Visual), and phenotypic and genetic correlations among these traits were estimated from records on 1492 progeny of 53 sires of a Corriedale flock by using restricted maximum likelihood procedures using an average information algorithm. The heritability of YPC was 0·27 ± 0·06. Genetic correlations between YPC and GFW, CFW, Yield, MFD, and Visual were 0·20 ± 0·14, 0·11 ± 0·14, –0·15 ± 0·13, 0·24 ± 0·14, and 0·95 ± 0·06, respectively. Phenotypic correlations were low between these traits and YPC. Visual had a heritability of 0·30 ± 0·06 and medium-high genetic correlations with all traits, except CFW. Heritability estimates of GFW, CFW, Yield, and MFD were 0·55 ± 0·07, 0·52 ± 0·07, 0·51 ± 0·07, and 0·52 ± 0·07, respectively. The expected correlated responses to selection against YPC are likely to cause reductions in CFW and MFD. Correlated responses from the reduction of Visual are predicted to be greater for all production traits than those from the reduction of YPC. Responses in YPC are predicted to be slightly higher when selection is on Visual (–0·21 score/year) than when selection is on YPC itself (–0·19 score/year). A selection index, including CFW, MFD, and YPC as aggregate breeding and breeding objective traits, calculated at I = +3·26CFW – 0·14MFD + 0·03YPC, predicted a YPC increase, worsening the problem.



Sign in / Sign up

Export Citation Format

Share Document