Heritability estimates and genetic and phenotypic correlations of lamb production parameters with hogget liveweight and fleece traits in Western Australian Merino sheep

2002 ◽  
Vol 53 (3) ◽  
pp. 281 ◽  
Author(s):  
S. W. P. Cloete ◽  
J. C. Greeff ◽  
R. P. Lewer

Heritability estimates (h2) for weight of lamb weaned and number of lambs weaned totalled over 3 reproduction opportunities were estimated in a multi-bloodline Western Australian medium wool resource flock. These traits were defined to give an indication of lifetime lamb production (the ewes were retained in the breeding flock for a maximum of 4 lambing opportunities). Both reproduction traits were highly variable, as suggested by coefficients of variation of approximately 50%. The between-bloodline variance ratio was significant (P < 0.05), but failed to exceed 5% of the total across-bloodline phenotypic variation. Within-bloodline h2 ( s.e.) was estimated at 0.154 0.040 for total weight of lamb weaned, and at 0.141 0.040 for total number of lambs weaned. Within-bloodline genetic correlations of both traits with hogget liveweight were positive and significant (P < 0.05; 0.58 0.11 and 0.26 0.13, respectively). Within-bloodline genetic correlations of the reproduction traits with wool production were generally positive, being 0.26 0.11 for the correlation between total weight of lamb weaned and clean fleece weight, and 0.29 0.15 for the correlation between total number of lambs weaned and clean fleece weight. Clean yield was genetically unrelated to both measures of reproductivity. The genetic correlation of total weight of lamb weaned per breeding ewe with fibre diameter was positive in sign, but smaller than twice its standard error (0.17 0.10). The corresponding estimate for total number of lambs weaned was 0.16 0.12. It was concluded that the reproduction traits investigated would respond to selection in Western Australian Merinos if it should form part of a breeding strategy. Genetic correlations with hogget liveweight and wool traits were generally favourable.

Author(s):  
SPACE Lalit ◽  
Z. S. Malik ◽  
D. S. Dalal ◽  
C. S. Patil ◽  
S. P. Dahiya

Data on growth, reproduction and wool traits of 1603 Harnali sheep maintained at Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar over a period of 22 years (1992-2013) were utilized for genetic analysis. The overall least squares mean for birth weight (BW), weaning weight (WW), six month body weight (SMW), age at first lambing (AFL), weight at lambing (WL), average lambing interval (ALI), greasy fleece weight (GFW), staple length (SL) and Fibre diameter (FD) were estimated as 3.35±0.02 kg, 12.41±0.08 kg, 16.30±0.12 kg, 707.05±2.07 days, 26.91±0.10 kg and 402.85±2.40 days, 1.62±0.02 kg, 5.65±0.03 cm and 25.85±0.07 μ, respectively. The effect of year of birth, sex of lamb and dam's weight at lambing were significant for all growth traits. The effect of year of birth and dam's weight at lambing were significant for all reproduction traits and GFW. No definite trend was observed over the years for body weights and reproductive traits. The effect of sex was significant for early growth traits. The heritability estimates were moderate for all the growth traits with high genetic correlations of BW and WW with SMW. Reproduction traits had lower estimates of heritability which indicated presence of lower additive genetic variance for these traits. Heritability estimates for studied wool traits were moderate to high. Positive genetic and phenotypic correlation of BW and WW with six month body weight and grease fleece weight indicated that selection for six month body weight would increase body weight and grease fleece weight.


1994 ◽  
Vol 45 (4) ◽  
pp. 829 ◽  
Author(s):  
RP Lewer ◽  
RR Woolaston ◽  
RR Howe

Data from a Western Australian experimental flock of Merino sheep were used to estimate genetic and phenotypic parameters for clean fleece weight (CFW), greasy fleece weight (GFW), average fibre diameter (FD), and clean yield (Y) from hogget fleeces as well as liveweights at birth (BWT), weaning (3WT), 8-9 months (8WT), 11-12 months (11WT) and 14-15 months (14WT) of age. The estimates were derived for male and female hoggets using restricted maximum likelihood REML. Simple models were fitted in which most environmental effects were omitted for comparison with results from models containing all recorded significant environmental effects. There were no significant differences amongst heritability estimates between models or sexes. Genetic correlations were calculated between sexes for each trait, with none being significantly different to unity. Ranges of heritability estimates across models and sexes were: GFW, 0.30-0-42; CFW, 0.26-0.44; Y, 0.46-0.59; FD, 0.47-0.59; BWT, 0.16-0.33; 3WT, 0.32-0.39; 8WT, 0.22-0.36; llWT, 0-27-0.44; 14WT, 0.27-0.50. Estimates of genetic and phenotypic correlations were in reasonable agreement with other literature values. As with the heritability estimates, the model fitted did not result in important differences in either genetic or phenotypic correlations.


2003 ◽  
Vol 77 (3) ◽  
pp. 355-362 ◽  
Author(s):  
J. Conington ◽  
A. Murphy

AbstractGenetic parameters were estimated for wool quality, fleece characteristics and lamb production traits for Scottish Blackface sheep reared under extensive hill conditions in the UK. In two separate studies, heritabilities and genetic correlations were estimated for wool quality traits measured on lambs at 5 months of age and again on the shorn fleece a year later. The wool traits included birth coat length (BCT), 10-point scores for proportion of grey and kemp fibres present in the fleece (grey, kemp), British Wool Marketing Board (BWMB) recommendation (REC), greasy fleece weight (FLWT), BWMB fleece grade (FLGR), and average staple length (ASL). Genetic and phenotypic correlations were estimated between lamb wool traits and lamb live weights at birth (BWT), marking (at mid lactation with an average age of 7 weeks) (MWT), weaning (at an average age of 17 weeks) (WWT) and slaughter (SLWT), average fat depth (AVFD) and average muscle depth (MD). Individual lamb carcass measurements included Meat and Livestock Commission (MLC) conformation score (CONF) and fat class (FATC). Heritability estimates measured on 2524 or more live lambs were 0·69, 0·52, 0·26, 0·42 and 0·31 for BCT, ASL, grey, kemp and REC respectively. Heritability estimates for traits measured on the shorn fleece a year later for 1415 ewes were 0·37, 0·02, 0·57, 0·43, 0·46 and 0·14 for ASL, grey, kemp, REC, FLWT and FLGR respectively. Genetic correlations between FLWT in hoggets and other wool were positive and moderate to high in magnitude, ranging from 0·22 for kemp in lambs to 0·48 for grey in hoggets. Genetic correlations between REC and live-weight traits were 0·39 for MWT, 0·37 for WWT and 0·44 for SLWT. Genetic correlation between ASL and ultrasonic fat depth was 0·15 and for ASL and ultrasonic muscle depth was -0·30. The results indicate that the simple scoring systems derived to assess these traits are useful indicators of fleece quality, are highly repeatable over time and are a good gauge of likely future wool production. The results indicate that selection for heavier, leaner lambs should not compromise fleece quality, as assessed in this study.


1993 ◽  
Vol 44 (7) ◽  
pp. 1523 ◽  
Author(s):  
SI Mortimer ◽  
KD Atkins

Components of the fleece and wool quality traits were measured or assessed on Merino hogget ewes in an unselected multiple-bloodline flock over a 7-year period at Trangie Agricultural Research Centre, N.S.W. The traits recorded were face cover score (FC), leg cover score (LC), neck fold score (NF), body fold score (BF), wax content (W), suint content (S), vegetable matter content (VM), dust penetration (D), follicle density (N) and follicle ratio (RA). Genetic differences within and between flocks of Merino sheep were examined for the traits, and estimates of heritability and within-flock genetic and phenotypic correlations and between-flock genetic correlations among the traits were obtained. Genetic and phenotypic correlations were also estimated between these traits and the major wool production traits: greasy fleece weight (GFW), clean fleece weight (CFW), fibre diameter (FD), body weight (BWT) and staple length (SL). Significant strain. flock within strain and flock effects were wresent for all traits. The influence of environmental effects (birth-rearing type, age at measurement and age of dam) on the traits was estimated, with the birth-rearing type being significant and the largest effect for most traits. Paternal half-sib heritability estimates were 0.44� 0.06 for FC, 0.35� 0.06 for LC, 0.24�0.05 for NF, 0.23�0.05 for BF, 0.38�0.07 for W, 0.42�0.07 for S, 0.06�0.04 for VM, 0.22�0.06 for D, 0.20� 0.07 for N and 0.21�0.07 for RA. Estimates of within-flock phenotypic and genetic correlations were in broad agreement with available published estimates. The implications of the results for Merino breeding programs are discussed.


1984 ◽  
Vol 39 (3) ◽  
pp. 399-403 ◽  
Author(s):  
M. A. Abouheif ◽  
C. LeRoy Johnson ◽  
M. P. Botkin

ABSTRACTData were collected from 600 newborn lambs, offspring of 354 Western crossbred ewes and 26 rams, to determine heritability estimates as well as phenotypic and genetic correlations between wool follicle variables using histological techniques. Breed of sire and sire within breed were significant sources of variation in total and secondary wool follicle populations and secondary:primary (S:P) ratio. Heritability estimates calculated by regression of offspring on dam were slightly higher than by paternal half-sib correlation or regression of offspring on sire. Expressed as an average of the three methods of calculation, the heritability estimate for S:P ratio was highest (0·69), followed by estimates for secondary, total and primary wool follicles (0·52, 0·46 and 0·36, respectively). These estimates are similar to the heritabilities of fleece weight, staple length and fibre diameter. Selection for increased density, provided an accurate measure is used, is suggested as an effective means for increasing fleece weight within grade.


2002 ◽  
Vol 53 (3) ◽  
pp. 271 ◽  
Author(s):  
S. W. P. Cloete ◽  
J. C. Greeff ◽  
R. P. Lewer

(Co)variance estimates for hogget liveweight, greasy fleece weight, clean fleece weight, clean yield, fibre diameter, and the coefficient of variation of fibre diameter were obtained for a Western Australian Merino resource flock. The flock encompassed 16 medium wool bloodlines and data were available for the period 1982–93. Direct additive genetic variances (h2) — expressed as a ratio of the total phenotypic variance within bloodlines — were estimated at 0.52 for hogget liveweight, 0.44 for greasy fleece weight, 0.42 for clean fleece weight, 0.63 for clean yield, 0.71 for fibre diameter, and 0.62 for coefficient of variation of fibre diameter. Maternal genetic variance estimates were significant (P < 0.05) only in hogget liveweight and fibre diameter, but components within bloodlines were low (0.05 for liveweight and 0.02 for fibre diameter). Direct within-bloodline genetic correlations of hogget liveweight as well as greasy and clean fleece weight with fibre diameter were positive (0.17, 0.31, and 0.31, respectively), suggesting that selection for bigger and heavier cutting sheep would generally lead to a broader fibre diameter. Liveweight was unrelated to clean yield and negatively related to coefficient of variation of fibre diameter (–0.17). Greasy fleece weight was negatively related to clean yield (–0.20). The genetic correlation of clean fleece weight with clean yield was positive (0.37). Wool quantity was, in general, positively related to coefficient of variation of fibre diameter, although the estimated genetic correlations were low (0.12 for greasy fleece weight and 0.07 for clean fleece weight). The genetic correlation between fibre diameter and coefficient of variation of fibre diameter was negative, and fairly low (–0.10). These results are discussed with reference to sheep breeding.


1994 ◽  
Vol 45 (2) ◽  
pp. 469 ◽  
Author(s):  
LD Brash ◽  
NM Fogarty ◽  
AR Gilmour

Performance of sheep from a large Corriedale stud flock was assessed. Weaning and yearling liveweights, greasy and clean fleece weights, clean fleece yield and average fibre diameter records on approximately 3000 animals representing 64 sires were analysed. Also scrotal circumference of 1009 rams representing 27 sires were analysed. Some 3740 reproduction records over 11 years, for 980 ewes representing 114 sires, were also analysed. Heritability estimates were 0 34 �0.07 for weaning liveweight, 0.132 � 0.04 for yearling liveweight, 0.32 � 0.07 for greasy and 0.29 � 0.07 for clean fleece weights, 0.534 � 0 10 for clean fleece yield, 0-56 � 0 10 for yearling and 0 62 � 0 - 14 for hogget fibre diameters and 0.l5 � 0.11 for scrotal circumference. The genetic correlations between liveweight and fleece weight ranged from 0.13 to 0.34, and those for liveweight and fibre diameter were close to zero. The genetic correlations of scrotal circumference with liveweight and wool traits were positive and moderate. Reproductive performance in the flock was high, with fertility 92% and litter size 1.62, resulting in 148% lambs born and 130% lambs tagged alive of ewes joined. Estimated heritabilities for reproduction traits were 0-03 � 0.02 for lambs born and for lambs tagged, and the component traits, fertility 0 01 � 0 -02, litter size 0.04 � 0.03 and neonatal lamb survival was zero. Lambing date had a heritability of 0.06 � 0.03. Estimates of repeatability ranged from 0-04 � 0-01 for fertility to 0.07% 0.02 for lambs tagged and lambing date. Predicted heritabilities for the average of 3.8 records per ewe generally agreed with those estimated for average ewe lifetime performance, which ranged from 0.02 � 0.08 for fertility to 0.12 � 0.09 for lambs tagged and 0.l3 � 0.09 for lambing date.


2001 ◽  
Vol 72 (2) ◽  
pp. 241-250 ◽  
Author(s):  
T. Wuliji ◽  
K. G. Dodds ◽  
J. T. J. Land ◽  
R. N. Andrews ◽  
P. R. Turner

AbstractMerino yearling records from 1988 to 1992 birth years in ultrafine wool selection and random control flocks at Tara Hills High Country Station, New Zealand were analysed for live weight, fleece weight and wool characteristics. Estimates of heritability, genetic and phenotypic correlations among traits using REML methods are presented. Heritabilities (h2) of birth, weaning, autumn, spring and summer live weights and greasy and clean fleece weights were estimated as being 0·35, 0·34, 0·44, 0·43, 0·49, 0·24 and 0·28 respectively; while h2 of yield, fibre diameter, coefficient of variation in fibre diameter, staple crimp, staple length, staple strength, position of break, resistance to compression, bulk, CIE Y and CIE Y-Z were estimated to be 0·58, 0·59, 0·60, 0·45, 0·71, 0·13, 0·18, 0·46, 0·38, 0·38 and 0·42 respectively. Genetic correlations were found to be high among the live weights but low to moderate among fleece weight and wool characteristics. Heritability estimates of fibre diameter, fibre diameter variation and staple length were found to be higher in New Zealand fine wool Merinos than most of those reported in the literature. The results indicate that selection for reduced fibre diameter will have little effect on other major production traits such as live weight and fleece weight.


2009 ◽  
Vol 49 (4) ◽  
pp. 289 ◽  
Author(s):  
A. E. Huisman ◽  
D. J. Brown

The aim of this paper was to describe the genetic relationship among expressions at different ages of seven wool traits: greasy and clean fleece weights, fibre diameter, coefficient of variation of fibre diameter, staple length and strength, and mean fibre curvature. Genetic correlations among measurements at different ages for the same trait were moderate to high, and ranged from ~0.6 for both fleece weights to 0.9 and higher for mean fibre diameter and curvature. Generally, low to moderate genetic correlations (0.3–0.4) were estimated between fleece weights and fibre diameter, clean fleece weight and staple length, and fibre diameter and staple strength. Small positive genetic correlations (0.2) were estimated between greasy and clean fleece weight with fibre diameter coefficient of variation, and between fibre diameter and staple length. Mean fibre curvature had a negative genetic correlation (approximately –0.4) with most other wool traits, the exceptions were staple strength (~0.0) and coefficient of variation of fibre diameter (approximately –0.1). Fibre diameter, staple length and staple strength had negative genetic correlations with coefficient of variation of fibre diameter (–0.15, –0.10, and –0.61, respectively). The results indicate that for most wool traits only one measurement across ages is required to make accurate selection decisions. The relationships between traits are generally moderate to low suggesting that simultaneous genetic improvement is possible.


1970 ◽  
Vol 21 (5) ◽  
pp. 837 ◽  
Author(s):  
N Jackson ◽  
JW James

Data from two-tooth rams and ewes representing seven Australian Merino studs were analysed to provide estimates of between-stud genetic variances and between-stud genetic correlations for 20 wool and body traits. The estimates were used to compare two methods of choosing foundation animals for a new stud: selection within one stud or selection within each of several studs. Where only one trait was considered in selection, and provided that accurate estimates of stud mean breeding values were available, selection from a single stud was superior, although there were some differences between traits in the degree of superiority. Where more than one trait was considered the conclusion depended on the relative magnitudes and signs of the between and within-stud genetic and phenotypic correlations. In the particular case of selection for high clean fleece weight and fine fibre diameter, a strong unfavourable between-stud genetic correlation shifted the emphasis more toward selection from several studs, but selection from a single stud was still superior when accurate estimates of stud mean breeding values for clean fleece weight were available. When response to subsequent selection, as well as immediate gain in choice of founders, was considered, the conclusions were reversed. For a single trait, selection from several studs was always superior in the long term (three or more generations), and also in the short term when accurate estimates of stud mean breeding values were not available.


Sign in / Sign up

Export Citation Format

Share Document