scholarly journals 2D–1D Wavelet Reconstruction as a Tool for Source Finding in Spectroscopic Imaging Surveys

2012 ◽  
Vol 29 (3) ◽  
pp. 244-250 ◽  
Author(s):  
L. Flöer ◽  
B. Winkel

AbstractToday, image denoising by thresholding of wavelet coefficients is a commonly used tool for 2D image enhancement. Since the data product of spectroscopic imaging surveys has two spatial dimensions and one spectral dimension, the techniques for denoising have to be adapted to this change in dimensionality. In this paper we will review the basic method of denoising data by thresholding wavelet coefficients and implement a 2D–1D wavelet decomposition to obtain an efficient way of denoising spectroscopic data cubes. We conduct different simulations to evaluate the usefulness of the algorithm as part of a source finding pipeline.

Author(s):  
Karthikeyan P. ◽  
Vasuki S. ◽  
Karthik K.

Noise removal in medical images remains a challenge for the researchers because noise removal introduces artifacts and blurring of the image. Developing medical image denoising algorithm is a difficult operation because a tradeoff between noise reduction and the preservation of actual features of image has to be made in a way that enhances and preserves the diagnostically relevant image content. A special member of the emerging family of multiscale geometric transforms is the contourlet transform which effectively captures the image edges and contours. This overcomes the limitations of the existing method of denoising using wavelet and curvelet. But due to down sampling and up sampling, the contourlet transform is shift-variant. However, shift-invariance is desirable in image analysis applications such as edge detection, contour characterization, and image enhancement. In this chapter, nonsubsampled contourlet transform (shift-invariance transform)-based denoising is presented which more effectively represents edges than contourlet transform.


2020 ◽  
Vol 2020 (10) ◽  
pp. 179-1-179-7
Author(s):  
Vladimir Katkovnik ◽  
Mykola Ponomarenko ◽  
Karen Egiazarian ◽  
Igor Shevkunov ◽  
Peter Kocsis

We consider hyperspectral phase/amplitude imaging from hyperspectral complex-valued noisy observations. Block-matching and grouping of similar patches are main instruments of the proposed algorithms. The search neighborhood for similar patches spans both the spectral and 2D spatial dimensions. SVD analysis of 3D grouped patches is used for design of adaptive nonlocal bases. Simulation experiments demonstrate high efficiency of developed state-of-the-art algorithms.


Author(s):  
Rajiv Verma ◽  
Rajoo Pandey

The shape of local window plays a vital role in the estimation of original signal variance, which is used to shrink the noisy wavelet coefficients in wavelet-based image denoising algorithms. This paper presents an anisotropic-shaped region-based Wiener filtering (ASRWF) and BayesShrink (ASRBS) algorithms, which exploit the region characteristics to estimate the original signal variance using a statistical approach. The proposed approach divides the region centered on a noisy wavelet coefficient into various non-overlapping subregions. The Euclidean distance-based measure is considered to obtain the similarities between reference subregion and adjacent subregions. An appropriate threshold value is estimated by applying a statistical approach on these distances and the sets of similar and dissimilar subregions are obtained from a defined region. Thus, an anisotropic-shaped region is obtained by neglecting the dissimilar subregions in a defined region. The variance of every similar subregion is calculated and then averaged to estimate the original signal variance to shrink noisy wavelet coefficients effectively. Finally, the estimated signal variance is utilized in Wiener filtering and BayesShrink algorithms to improve the denoising performance. The performance of the proposed algorithms is analyzed qualitatively and quantitatively on standard images for different noise levels.


2001 ◽  
Vol 19 (7) ◽  
pp. 435-450 ◽  
Author(s):  
M.E. Zervakis ◽  
V. Sundararajan ◽  
K.K. Parhi

2014 ◽  
Vol 574 ◽  
pp. 432-435 ◽  
Author(s):  
Jie Zhan ◽  
Zhen Xing Li

An improved wavelet thresholding method is presented and successfully applied to CCD measuring image denoising. On the analysis of the current widely used soft threshold and hard threshold, combining characteristics of the CCD measuring image and use of local correlation of wavelet coefficients, an improved threshold function is proposed, and the denoising results were contrasted among different threshold functions. The simulation results show that adopting the improved threshold function can acquire better filtering effect than traditional soft threshold and hard threshold methods.


Sign in / Sign up

Export Citation Format

Share Document