Reliability of leaf functional traits after delayed measurements

2020 ◽  
Vol 68 (2) ◽  
pp. 100
Author(s):  
Dinesh Thakur ◽  
Lakhbeer Singh ◽  
Amit Chawla

In this study, the effect of temporary storage (at 4°C) on measurement of leaf traits was tested. We collected leaf samples from 25 species, which represented different functional types in the high altitude vegetation of western Himalaya, to measure leaf area (LA), leaf rehydration, specific leaf area (SLA) and leaf dry matter content (LDMC). Repeated trait measurements were performed for up to 7 days. We found that in all the species, LA increased in initial 24 h of rehydration and thereafter remained stable. Leaf rehydration was found to be sensitive to delayed measurements and changed significantly for up to 7 days. For SLA and LDMC, the effect of storage time was significant only for a few species. On the basis of our findings, we recommend that, for samples stored in dark at 4°C, LA, SLA and LDMC can reliably be estimated after a delay of up to 7 days. Further, these key leaf traits should be estimated only after 24 h of rehydration. Also, trait measurements after prolonged rehydration of leaves should be avoided. Outcomes of this study will be beneficial when a large number of samples are collected from locations far away from laboratory and temporary storage is necessitated before trait measurements.

2018 ◽  
Vol 4 (1) ◽  
pp. 56-63 ◽  
Author(s):  
Monika Rawat ◽  
Kusum Arunachalam ◽  
Ayyandar Arunachalam

Abstract Background: The primary function of the leaf is the production of the food and interchange the gases between the atmosphere and the plant surface. Establishing the relationship among the leaf traits is essential to understand the ecosystem functioning in the forest ecosystem. Here, the present study proposes a framework for species-level relationships between the traits in the temperate forest ecosystem. Methodology: Three morphological (leaf area, specific leaf area and leaf dry matter content), three chemical (leaf carbon, nitrogen and phosphorous content) and six physiological (chlorophyll, photosynthetic rate, stomatal conductance, intrinsic water use efficiency, transpiration rate, intercellular CO2 concentration) leaf traits were analysed in 10 woody tree species of temperate forest using linear mixed modelling. Results: Results showed that the leaf carbon was the only trait influencing the most to leaf area, specific leaf area and leaf dry matter content and leads to maximum variation in the functioning of the forest ecosystem. Conclusion: The results suggested that consideration of plant traits, and especially the leaf traits, increases the ability to describe variation in the functioning of the forest ecosystem. This study indicated that leaf carbon act as the significant predictor of leaf trait variation among the different species in the temperate forest ecosystem of the Indian Himalayan region.


Diversity ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 45
Author(s):  
Damjana Levačić ◽  
Sven D. Jelaska

Alongside the direct destruction of natural habitats and changes in land use, invasive species are considered one of the greatest threats to global biodiversity. Daisy fleabane Erigeron annuus (L.) Pers. is among the most widespread invasive plants in Croatia. Invasions of E. annuus may be aided by morphological variability, which this study investigates. The variability of life traits (stem height, fresh and dry leaf mass, length, width and leaf area, specific leaf area, and leaf dry matter content) was examined among 18 locations throughout Zagreb and Medvednica Mt. Overall, 87 plant specimens and 435 leaves were measured and analysed using univariate and multivariate statistics. Viable populations were recorded in diverse habitat types, mostly with marked human impact. We determined Grime’s CR plant life strategies for all, except for two localities with C/CR plant strategies. Two populations with a more pronounced competitive strategy had high leaf dry matter content, with smaller leaves and medium height stems. Significant differences between the localities were found, with the specific leaf area (SLA) and plant height being the most diverse. Despite its high morphological variability, daisy fleabane had a consistent CSR strategy, which likely enables its widespread invasions across variable habitats.


2017 ◽  
Vol 31 (6) ◽  
pp. 1336-1344 ◽  
Author(s):  
Simon Mark Smart ◽  
Helen Catherine Glanville ◽  
Maria del Carmen Blanes ◽  
Lina Maria Mercado ◽  
Bridget Anne Emmett ◽  
...  

2021 ◽  
Author(s):  
Jiyou Zhu ◽  
Qing Xu ◽  
Chengyang Xu ◽  
Xinna Zhang

Abstract Background: Functional trait-based ecological research has been instrumental in advancing our understanding of understanding of environmental changes. It is still, however, unclear how the functional traits of urban plants respond to atmospheric particulate pollution, and what trade-off strategies are shown. In order to explore the variation of plant functional traits with urban atmospheric particulate pollution gradient, we divided atmospheric particulate pollution into three levels according to road distance, and measured the variation of six key leaf functional traits and their trade-off strategies. Results: Here, we show that the functional traits of plants can be used as predictors or indicators of the response of plant to urban atmospheric particulate pollution. Within studies, there was a positive correlation between leaf thickness, leaf dry matter content, leaf tissue density, stomata density and leaf dust deposition. While chlorophyll content index and specific leaf area were negatively correlated with the leaf dust deposition. Plants improve the efficiency of gas exchange by optimizing the spatial distribution of stomata of leaves. Dust deposition promotes the regular distribution of stomata. Due to the pressure of atmospheric particles, urban plant shows a trade-off relationship of economics spectrum traits at the leaf level. Taken together, these results indicate that urban atmospheric particulate pollution is the main factor causing the variation of plant functional traits. Conclusion:Under the influence of urban atmospheric particulate matter, plant show a "slow investment-return" type in the global leaf economics spectrum, with lower specific leaf area, lower chlorophyll content, larger leaf thickness, higher leaf dry matter content, higher leaf tissue density and higher stomatal density. This finding provides a new perspective for understanding the resource trades-off strategy of plants adapting to air pollution environment.


2011 ◽  
Vol 108 (7) ◽  
pp. 1337-1345 ◽  
Author(s):  
J. G. Hodgson ◽  
G. Montserrat-Martí ◽  
M. Charles ◽  
G. Jones ◽  
P. Wilson ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document