Floral morphology, embryology, and relationships of the Berberidaceae.

1969 ◽  
Vol 17 (1) ◽  
pp. 69 ◽  
Author(s):  
RLN Sastri

The floral morphology and development of the gametophytes in Berberis umbellata and Mahonia leschenaultii have been studied. All the perianth members have three traces each in B. umbellata while in M. leschenaultii the members of the outer three whorls have five veins each and those of the fourth three veins each. The vascular supply for the inner two whorls of perianth and the stamens arises as conjoint traces. The wall of the gynoecium is traversed by numerous bundles with some concentrated in the placental region. The dorsal and ventral bundles are differentiated in M. leschenaultii but not in B. umbellata. The tricarpellary interpretation of the gynoecium is shown to be unconvincing. The gynoecium is regarded as monocarpellary. The mature anther wall is five-layered including the epidermis, of which the innermost layer forms the tapetum of secretory type. The tapetal cells are four to eight-nucleate. The hypodermal wall layer develops into a fibrous endothecium in M. leschenaultii. In B. urnbellata, the endothecium develops U-shaped thickenings. Division of pollen mother cells is successive. Pollen tetrads are usually isobilateral. Mature pollen grains are three-colpate and two-celled. The ovule is anatropous, bitegmic, and crassinucellate. In B. umbellata, a rudimentary aril is formed as an outgrowth of the funiculus. The single hypodermal archesporial cell in the young ovule cuts off a parietal cell. Development of the embryo sac is of the Polygonum type. The synergids show filiform apparatus and are persistent. The antipodals are large and persistent in M. leschenaultii and ephemeral in B. umbellata. The relationships of the Berberidaceae (sensu Hutchinson 1959) to the Menispermaceae, Lardizabalaceae, and the Ranunculaceae (sensu lato) are discussed.


1964 ◽  
Vol 12 (2) ◽  
pp. 157 ◽  
Author(s):  
PS Woodland

A comparative study was carried out between diploid and tetraploid races of Themeda australis from Armidale and Cobar, respectively. Some morphological variations occur in both populations, but sporogenesis and gametogenesis are identical. The anther is tetrasporangiate and the development of its four-layered wall is described. The tapetum is of the secretory type and its cells become binucleate at the initiation of meiosis in the adjacent microspore mother cells which undergo successive cytokinesis. Microspore tetrads are usually isobilateral and the pollen grains are three-celled at dehiscence, which takes place by lateral longitudinal slits. The ovule is of a modified anatropous form and bitegmic, the broad micropyle being formed of both integuments. The single hypodermal archesporial cell develops directly into the megaspore mother cell and the nucellar epidermis undergoes periclinal and anticlinal divisions to form a conspicuous epistase. The chalaza1 megaspore of the linear tetrad gives rise to a Polygonum-type embryo sac. Material from the Armidale population showed one embryo sac per ovule, but two to five embryo sacs were present in that from Cobar. Embryogeny is typically graminaceous and endosperm formation is at first free-nuclear, later becoming cellular. Polyembryony follows fertilization of several embryo sacs within the same ovule. The reasons for low fertility of T. australis and poor germination of seeds are discussed.



1968 ◽  
Vol 16 (1) ◽  
pp. 19 ◽  
Author(s):  
GL Davis

Flower buds are first recognizable in late December at the commencement of new growth, and the deciduous bracts enclosing each cyme are shed about 3 weeks later. The buds increase rapidly in size, but anthesis does not occur until the end of September and the seeds are not shed from the capsules until the following August. The development of the double operculum and the floral parts is traced. Archesporal tissue is differentiated in the anthers in late February but ovule primordia are not formed until the end of March, by which time the stamens have reached their full size and anther wall formation is well advanced. In each bud events in the anthers and ovules are broadly comparable, but variation in the stages of development occurs between buds on the same branch. Meiosis takes place during the winter months, and embryo sac development follows the Polygonum type. The components of the egg apparatus undergo a threefold increase in size after their formation and, whereas the egg contains little cytoplasm, the synergids become densely cytoplasmic and laterally hooked. The pollen grains are two-celled when they are shed through the slits at the apices of the anthers. A comparison is made of the embryology of E. melliodora and that of species cultivated in Italy and the Black Sea area of the Soviet Union.



1969 ◽  
Vol 17 (3) ◽  
pp. 403 ◽  
Author(s):  
FB Sampson

Inflorescences, flowers, and floral vascularization of the New Zealand endemic species Hedycarya arborea are described. Varying carpel vasculature suggests derivation of the uniovulate condition in Hedycarya from ancestors having multiovulate carpels with ovules in two rows, Floral ontogeny is described and it is noted that the terminal stigmatic region of the carpel develops from a solid terminal meristem, in contrast to many woody Ranales in which the stigma consists of crests surrounding the carpel cleft. The stigmatic surface is a mass of globose projections, apparently serving as pollen traps. No comparable type of stigma has previously been reported in the woody Ranales. The microsporangium has a typically thickened endothecium and a tapetum of the secretory type with tapetal cells becoming binucleate during the first meiotic division of pollen mother cells. Pollen mother cell division is of the successive type with cytokinesis by centrifugally extending cell plates. The generative cell is cut off towards the distal face of the microspore. The pollen, in permanent tetrads, is shed in the two-celled condition. Ovules are bitegmic, crassinucellate, and anatropous with a Polygonum type of embryo sac development. Some comparisons are made with the Australian species Hedycarya angustifolia.



1967 ◽  
Vol 15 (3) ◽  
pp. 413 ◽  
Author(s):  
N Prakash

Accessory flowers arise from the surface of inferior ovaries in 25 % of the flowers of Tetragonia, suggesting an axial nature of the inferior ovary. The ovary is six to nine-loculed, with a single pendulous ovule in each locule. The anther is tetrasporangiate. The innermost layer of the four-layered wall constitutes a secretory tapetum with multinucleate cells. Cytokinesis in microspore mother cells is simultaneous and results in tetrahedral or decussate tetrads. The pollen grains are shed at the three-celled stage. The ovules are bitegminal, crassinucellar, and anacampylotropus. The funiculus is long and bears an obturator of glandular cells. The inner integument forms the micropyle and forms a collar at the distal end. A nucellar cap is present. The nucellus persists in the seed as perisperm. The archesporium is multicelled, although only a single cell develops. Following meiosis the megaspore mother cell gives rise to a linear row of three or four megaspores, of which only the chalaza1 functions to form an embryo sac of the Polygonum type. The endosperm is of the Nuclear type and eventually assumes a horseshoe shape. Cell formation is restricted to the micropylar region, the rest remaining nuclear until consumed by the embryo. The embryogeny is of the Solanad type, and the mature embryo is curved and dicotyledonous.



1963 ◽  
Vol 11 (2) ◽  
pp. 152 ◽  
Author(s):  
G Want

In Wahlenbergia bicolor, the anther wall is composed of four layers: epidermis, endothecium, middle layer, and tapetum. Wall formation and microsporogenesis are described, and the pollen grains are shed at the two-celled condition. The ovules are tenuinucellate, with a hypodermal archesporial cell which develops directly as the megaspore mother cell. Megasporogenesis is normal, and a monosporic eight-nucleate embryo sac of the most common Polygonum type develops from the chalazal megaspore. The antipodals degenerate before fertilization. The development of the embryo is of the solanad type. A suspected case of polyembryony was observed. The endosperm is cellular from its inception, and so conforms to the Codonopsis type. A micropylar and a chalazal haustoriurn, both consisting of two uninucleate cells, are formed from the endosperm. Comparative studies were made with a known but as yet undescribed coastal species of Wahlenbergia, and no differences were found.



1969 ◽  
Vol 17 (3) ◽  
pp. 425 ◽  
Author(s):  
FB Sampson

Floral ontogeny and gametophyte development of the New Zealand endemic species Laurelia novae-zelandiae is described. The microsporangium has three to five wall layers inside the epidermis, including a typically thickened endothecium and a tapetum of the secretory type in which the cells become binucleate during the first meiotic division of pollen mother cells. Cytokinesis of pollen mother cells is of an unusual type in which centrifugal cell plates do not develop until the end of meiosis 11. The generative cell of the pollen grain is cut off against what represents a radial wall of the grain with reference to the tetrad stage. Pollen is two- or three-celled when shed. Ovules are bitegmic, crassinucellate, and anatropous with a Polygonum type of embryo sac development.



1969 ◽  
Vol 17 (1) ◽  
pp. 97 ◽  
Author(s):  
N Prakash

The anther is tetrasporangiate and the development of its wall is of the Basic type. Ubisch granules are formed on the surface of the tapetum at the signet-ring stage of the pollen grains. The anther dehisces by longitudinal slits, and pollen grains are shed at the two-celled stage. The female archesporium is subepidermal and cuts off the primary parietal cell. A six-layered parietal tissue is formed below the nucellar epidermis by the time megasporogenesis is completed. The flowers are protandrous, and in any given bud meiosis in megaspore mother cells follows that in microspore mother cells. Embryo sac development is of the Polygonum type and the antipodal cells are ephemeral. Cell formation in the nuclear endosperm commences at the micropylar end and proceeds towards the chalaza. Embryogeny corresponds to the Onagrad type and no evidence of polyembryony was found. Both the integuments take part in the formation of the seed coat, in which the cells of the outer layer of the outer integument are conspicuously elongated. A comparison is made with the embryological findings in other myrtaceous plants.



1967 ◽  
Vol 15 (3) ◽  
pp. 425 ◽  
Author(s):  
N Prakash

Hereroa hesperantha belongs to the embryologically little known group of mesembryanthemums. The anther wall is four-layered, the innermost layer constituting the secretory tapetum with multinucleate cells. Prominent Ubisch granules dot the inner tangential and radial walls of the tapetal cells. Cytokinesis in the microspore mother cells is simultaneous, and either tetrahedral or decussate tetrads are formed. The mature pollen is three-celled. The ovules are anacampylotropous, bitegminal, crassinucellar, and non-arillate. The need for employing a uniform terminology for ovular curvature in the Aizoaceae is stressed in view of the existing confusion. The ovules are borne on parietal placentae each of which bears an obturator. The archesporium is one- to many-celled, but only one cell functions. Sporadic cases of double megaspore tetrads and two-nucleate dyad cells were observed. The development of the female gametophyte conforms to the Polygonum type. The synergids and antipedal cells are short-lived. The endosperm is of the Nuclear type and produces a weakly haustorial chalazal caecum. Perisperm takes over the function of endosperm in the mature seed. The embryogeny corresponds to the Solanad type. There is a massive suspensor with some multinucleate cells. The mature seed coat resembles closely that of the Cactaceae and comprises the outer layer of the outer and inner layer of the inner integument, both of which become greatly enlarged and tanniniferous. In features like the presence of staminodes and inferior ovary and the absence of aril, Hereroa differs from other Aizoaceae.



Rodriguésia ◽  
2021 ◽  
Vol 72 ◽  
Author(s):  
Yanina de Jesús Pérez ◽  
Maria Betiana Angulo ◽  
Ana Honfi ◽  
Massimiliano Dematteis

Abstract Lessingianthus plantaginoides (Vernonieae, Asteraceae) is a small natural tetraploid shrub that inhabits rocky highlands from South America. The population studied inhabits and covers an extensive region of a private reserve with high local biodiversity and animal and plant endemisms. With the purpose of providing insights into the cyto-embryology of this tetraploid species, the aims of this study were: to perform an ontogenetic study of the male and female gametophytes of L. plantaginoides; to carry out detailed meiotic analysis and evaluate the fertility of this species; to document and provide highlights on taxonomic implications of their reproductive aspects. Lessingianthus plantaginoides presented the following male and female gametophyte traits: dicotyledonous type of anther wall development, tetrahedral tetrads, 3-celled mature pollen grains; development of the chalazal megaspore, monosporic embryo sac and Polygonum type of megagametophyte development. The meiotic behavior was regular, the spores were tetrads of equal size and the pollen grains were highly stainable. Lessingianthus plantaginoides is a highly diplodized autotetraploid that reproduces sexually and has high meiotic regularity; which is apparently responsible for its colonization potential. It now seems certain that polyploid speciation plays a significant role in the establishment and diversification of the genus.



1969 ◽  
Vol 17 (3) ◽  
pp. 457 ◽  
Author(s):  
N Prakash

The flower buds of Angophora floribunda appear in the last week of November and anthesis occurs in the middle of January the following year. There is no prolonged resting phase at any stage during embryology and the seeds are shed during late February to early March. In floral development, the petals are the last structures to be formed. Early anther development precedes corresponding stages in the ovules of the same flower, but events in the ovules proceed more rapidly and meiosis occurs simultaneously in the spore mother cells of both organs. The mature two-celled pollen grains are shed when the ovules contain four-or eight-nucleate embryo sacs. Many flowers bear anthers containing only sterile pollen grains, which occur either singly or as tetrads. Various abnormalities in the development of the pollen are reported, and the anthers containing sterile pollen neither develop fibrous bands in the endothecium nor do they dehisce. The ovules are bitegminal, crassinucellar, and hemianatropous. Occasional bifurcation of the inner integument was observed and a hypostase differentiates at the four-nucleate stage of the embryo sac. The embryo sac follows the Polygonum type of development and is five-nucleate and four-celled when mature. The endosperm is Nuclear in origin, and in about half the seeds examined a granular unidentified substance accumulates in the embryo sac. The development of the embryo is irregular and the seedlings bear a collar-like structure at the junction of the hypocotyl and the radicle. The mature embryos are usually dicotyledonous but rarely tricotyledonous. The seed coat is formed exclusively by the outer integument; in the ripe seed it consists of an outer epidermis of large, palisade-like, thin-walled, tanniniferous cells and an inner crystalliferous layer.



Sign in / Sign up

Export Citation Format

Share Document