Experimental and Theoretical Investigation of the Reaction of Secondary Amines with Maleic Anhydride

2017 ◽  
Vol 70 (12) ◽  
pp. 1247 ◽  
Author(s):  
Manjinder Kour ◽  
Raakhi Gupta ◽  
Raj K. Bansal

The reaction of secondary amines, namely 1-methylpiperazine, pyrrolidine, morpholine, 2-methylpiperidine, and diethylamine, with maleic anhydride has been investigated experimentally and theoretically at the DFT level. Under kinetic control, i.e. at −78°C or −15°C, amines add across the C=O functionality exclusively and the initially formed addition products isomerize to the corresponding N-substituted maleimic acid derivatives. In contrast to the acyclic α,β-unsaturated carbonyl compounds, amine does not add across the C=C functionality in maleic anhydride even under thermodynamic control. This behaviour of maleic anhydride can be rationalized on the basis of the local condensed Fukui functions, which reveal that the carbonyl carbon atoms in maleic anhydride are much harder than in an acyclic α,β-unsaturated carbonyl compound, such as acrolein. This prompts the amines to attack the carbonyl group in maleic anhydride exclusively.

2020 ◽  
Vol 18 (1) ◽  
pp. 857-873
Author(s):  
Kornelia Czaja ◽  
Jacek Kujawski ◽  
Radosław Kujawski ◽  
Marek K. Bernard

AbstractUsing the density functional theory (DFT) formalism, we have investigated the properties of some arylsulphonyl indazole derivatives that we studied previously for their biological activity and susceptibility to interactions of azoles. This study includes the following physicochemical properties of these derivatives: electronegativity and polarisability (Mulliken charges, adjusted charge partitioning, and iterative-adjusted charge partitioning approaches); free energy of solvation (solvation model based on density model and M062X functional); highest occupied molecular orbital (HOMO)–lowest occupied molecular orbital (LUMO) gap together with the corresponding condensed Fukui functions, time-dependent DFT along with the UV spectra simulations using B3LYP, CAM-B3LYP, MPW1PW91, and WB97XD functionals, as well as linear response polarisable continuum model; and estimation of global chemical reactivity descriptors, particularly the chemical hardness factor. The charges on pyrrolic and pyridinic nitrogen (the latter one in the quinolone ring of compound 8, as well as condensed Fukui functions) reveal a significant role of these atoms in potential interactions of azole ligand–protein binding pocket. The lowest negative value of free energy of solvation can be attributed to carbazole 6, whereas pyrazole 7 has the least negative value of this energy. Moreover, the HOMO–LUMO gap and chemical hardness show that carbazole 6 and indole 5 exist as soft molecules, while fused pyrazole 7 has hard character.


2015 ◽  
Vol 35 (2) ◽  
pp. 62-69 ◽  
Author(s):  
Qingyou Zhang ◽  
Fangfang Zheng ◽  
Tanfeng Zhao ◽  
Xiaohui Qu ◽  
João Aires-de-Sousa

1979 ◽  
Vol 20 (17) ◽  
pp. 1543-1546 ◽  
Author(s):  
L. Wartski ◽  
M. El Bouz ◽  
J. Seyden-Penne ◽  
W. Dumont ◽  
A. Krief

2003 ◽  
Vol 107 (51) ◽  
pp. 11483-11488 ◽  
Author(s):  
Gloria I. Cárdenas-Jirón ◽  
Eduardo Parra-Villalobos

2019 ◽  
Vol 2019 (38) ◽  
pp. 6557-6560 ◽  
Author(s):  
Karim Muratov ◽  
Oleg I. Afanasyev ◽  
Ekaterina Kuchuk ◽  
Sofiya Runikhina ◽  
Denis Chusov

2000 ◽  
Vol 78 (9) ◽  
pp. 1194-1203
Author(s):  
Paul C Venneri ◽  
John Warkentin

A cyclopropanone, a cyclopropenone, cyclobutanones, a cyclobutane-1,3-dione, and a cyclobutene-1,2-dione reacted with dimethoxycarbene to afford acetals of the next larger ring by formal insertion of the carbene into a C—C bond α to the carbonyl group. When either of two saturated α-ring carbons could be involved in the process, the ring expansion was selective, affording primarily the product of apparent insertion into the more substituted ring bond. With 2,3-dimethoxycyclobutene-1,2-dione, insertion occurred between the carbonyl groups and with β-propiolactone it occurred at the lactone bond. β-Propiolactam, however, reacted by insertion of the carbene into the N—H bond.Key words: β-propiolactone, cyclobutanone, cyclobutananedione, cyclopropanone, dialkoxycarbene.


Sign in / Sign up

Export Citation Format

Share Document