Structural Systematics of Lanthanide(III) Picrate Solvates: Neutral, Mononuclear Ln(pic)3(dimethylsulfoxide)3 Arrays

2020 ◽  
Vol 73 (6) ◽  
pp. 447
Author(s):  
Zouhair Asfari ◽  
Eric J. Chan ◽  
Jack M. Harrowfield ◽  
Brian W. Skelton ◽  
Alexandre N. Sobolev ◽  
...  

Adducts of dimethylsulfoxide, dmso=Me2SO, with lanthanide(iii) picrates (picrate=2,4,6-trinitrophenoxide, pic) of stoichiometry Ln(pic)3·3dmso have been prepared and characterised by single-crystal X-ray structure determinations as discrete, neutral, mononuclear molecular species. Such complexes have been obtained across the gamut of Ln, specifically for Ln=La, Pr, Nd, Sm, Gd, Dy, Yb, Lu, and Y, presumably also accessible for other intermediate members, the series being isomorphous (monoclinic, C2/c, Z=8); a second triclinic P form has also been identified for Ln=La, Pr. In both forms, the metal atom coordination environments are nine-coordinate, tricapped trigonal prismatic, [Ln(dmso-O)3(pic-O,O′)3], two of the three unidentate ligands lying in one of the trigonal planes and one in the other (an isomer we have termed meridional, mer). A hydrated form of Ln(pic)3·2dmso·H2O stoichiometry has also been defined for Ln=Sm, Gd, Lu, the metal atom environment again nine-coordinate, [Ln(dmso-O)2(H2O)(pic-O,O′)3], but now fac, with the three unidentate ligands occupying one triangular face of the tricapped trigonal prism and involved in a centrosymmetric H-bonding array with the three similar ligands of an adjacent complex; the three capping atoms are nitro-oxygen atoms, the phenoxy-O triad occupying the other face.

1979 ◽  
Vol 32 (2) ◽  
pp. 301 ◽  
Author(s):  
V Diakiw ◽  
TW Hambley ◽  
DL Kepert ◽  
CL Raston ◽  
AH White

The crystal structure of the title compound, Ca(C6H2N307)2,5H2O, has been determined by single-crystal X-ray diffraction at 295(1) K and refined by least squares to a residual of 0.049 for 1513 'observed' reflections. Crystals are orthorhombic, Pmab, a 24.169(6), b l0.292(7), c 8.554(2) �, Z 4. The stereochemistry about the calcium has not been observed previously for the system [M(bidentate)2- (unidentate)4]; in the present structure, the calcium is coordinated by a pair of bidentate picrate ligands and the four water molecules in an array in which three of the water molecules occupy a triangular face of a square antiprism, the overall array having m symmetry. The remaining water molecule occupies a lattice site with no close interaction with the other species.


2020 ◽  
Vol 73 (6) ◽  
pp. 455
Author(s):  
Eric J. Chan ◽  
Jack M. Harrowfield ◽  
Brian W. Skelton ◽  
Alexandre N. Sobolev ◽  
Allan H. White

Single crystal X-ray structural characterisations are reported for adducts of the form [(L-O)Eu(O,O′-dpm)3] obtained by the crystallisation of tris(dipivaloylmethanato)europium(iii) (dpm=[HC(C(tBu).CO)2]−) from an array of dipolar aprotic oxygen-donor solvents L (L=N-methylpyrrolidinone (nmp), trimethylphosphate, (MeO)3PO, (tmp), hexamethylphosphoramide (hmpa), dimethylacetamide (dma), dimethyl sulfoxide (dmso), and the bidentate octamethylpyrophosphoramide (ompa). In all adducts, the resulting arrays contain seven-coordinate metal atoms, which adopt two different isomeric forms of the mono-capped trigonal prismatic stereochemistry, the L=dma and dmso adducts corresponding to one type, nmp and tmp the other. The adduct formed with ompa behaves as a pair of discrete metal environments bridged by the O-ompa-O′ ligand, thus; [(dpm-O,O′)3Eu(O-ompa-O′)Eu(O,O′-dpm)3], and is found in two forms, one in which both Eu environments is of the tmp type, the other of the dmso/dma type. In the hmpa adduct, the asymmetric unit of the structure is a disordered composite of both types. In none of the adducts is there any further solvation beyond coordination of a single L.


2020 ◽  
Vol 73 (6) ◽  
pp. 529
Author(s):  
Eric J. Chan ◽  
Simon A. Cotton ◽  
Jack M. Harrowfield ◽  
Brian W. Skelton ◽  
Alexandre N. Sobolev ◽  
...  

Reactions of the lanthanide(iii) picrates (picrate=2,4,6-trinitrophenoxide=pic) with 1,10-phenanthroline (phen) and 2,2′:6′,2′′-terpyridine (terpy) in a 1:2 molar ratio have provided crystals suitable for X-ray structure determinations in instances predominantly involving the lighter lanthanides. In all, the aza-aromatic ligands chelate the lanthanide ion, none being found as ‘free’ ligands within the lattice. The complexes of 1,10-phenanthroline have been characterised in two forms, one unsolvated (Ln=La, Sm, Eu; monoclinic, C2/c, Z 8), one an acetonitrile monosolvate (Ln=Gd; monoclinic, P21/a, Z 4), the latter being the only previously known form (with Ln=La). In both forms, the LnIII is nine-coordinate, in an approximately tricapped trigonal-prismatic environment, with two picrate ligands chelating through phenoxide and 2-nitro group oxygen atoms, the third being bound through phenoxide-O only. The 2,2′:6′,2′′-terpyridine complexes, all acetonitrile monosolvates defined for Ln=La, Gd, Er, and Y (monoclinic, C2/c, Z 4), are ionic, one picrate having been displaced from the primary coordination sphere. For Ln=La, the two bound picrates are again chelating, making the LaIII 10-coordinate in a distorted bicapped square-antiprismatic environment but in the other species they are bound through phenoxide-O only, making the LnIII ions eight-coordinate in a distorted square-antiprismatic environment. Stacked arrays of the ligands can be found in both series of complexes, with intramolecular picrate–picrate and picrate–aza-aromatic stacks being prominent features.


1999 ◽  
Vol 77 (3) ◽  
pp. 313-318 ◽  
Author(s):  
George KH Shimizu ◽  
Gary D Enright ◽  
Gabriela S Rego ◽  
John A Ripmeester

Single crystal X-ray structure determinations of two solvated silver sulfonates have been obtained and these compounds have been shown to adopt infinite one-dimensional motifs. {AgOTs(MeCN)}[Formula: see text] (OTs = p-toluenesulfonate) crystallizes in the monoclinic space group, P21, a = 8.4278(5) Å, b = 5.7413(3) Å, c = 12.1057(7) Å, β = 109.24(1)°. {Ag(NDSA)(MeCN)2(H3O)(H2O)2}[Formula: see text] (NDSA = 1,5-naphthalenedisulfonate) crystallizes in the triclinic space group, P[Formula: see text], a = 8.3407(4) Å, b = 10.4374(5) Å, c = 12.3399(6) Å, α = 101.941(8)°, β = 109.24(1)°, γ = 102.190(8)°. Despite one compound containing a monosulfonate and the other a disulfonate, both complexes form infinite one-dimensional arrays.Key words: silver, sulfonates, coordination polymer.


1989 ◽  
Vol 42 (6) ◽  
pp. 913 ◽  
Author(s):  
LM Engelhardt ◽  
PC Healy ◽  
JD Kildea ◽  
AH White

Mixed base pyridine (py)/triphenylphosphine adducts of the copper(1) halides, CuX, have been synthesized for 1 : 1 : 1 stoichiometry for X = chloride and iodide; single-crystal X-ray structure determinations of these show them to be isomorphous and isostructural with that of the bromide recorded elsewhere, being �,�′- dihalo-bridged dimers , [(PPh3)( py )CuX2Cu( py )(PPh3)], monoclinic, C2/c, a ≈ 26.2, b ≈ 14.3, c ≈ 11 .2 � , β ≈ 95, Z = 4 dimers. The bromide has been isolated as a new monoclinic C 2/m polymorph, a 11 .279(8), b 14.268(6), c 13.858(4) �, β 109.33(6)�, Z=4 dimers, and details of its structure are also recorded. The structures of their pyridine-4-carbonitrile (pycn) analogues have also been determined and found to be also binuclear, with no cyano-copper interactions; these also are an isomorphous, isostructural series, monoclinic P21/n, a ≈ 15.4, b ≈ 8.1, c ≈ 17.9 � , β ≈ 101 �, Z = 2 dimers. In each series of dimers, one half of the dimer is crystallographically independent, the generators of the other half being twofold rotor (C2/c phase), mirror (C2/m phase) and inversion centre (P21/n phase) respectively.


2000 ◽  
Vol 53 (10) ◽  
pp. 867 ◽  
Author(s):  
Kevin C. Lim ◽  
Brian W. Skelton ◽  
Allan H. White

Low-temperature (c. 153 K) single-crystal X-ray structure determinations, carried out on trivalent rare earth iodides crystallized from aqueous solution at room temperature, have defined two series of hydrates, LnI3.nH2O. For Ln = La–Ho, a nonahydrate phase (n = 9) is defined, orthorhombic Pmmn, a ~ 11.5, b ~ 8.0, c ~ 8.8 Å, Z = 2, the second phase (n = 10), monoclinic P21/c, Z = 4 being defined for Ln = Er–Lu, a ~ 8.2, b ~ 12.8, c ~ 17.1 Å, β ~ 103.7˚. Neither of these phases is isomorphous with any of those pertinent to the previously studied chloride or bromide (hydrated) arrays, nor, unlike those, does the halide (iodide) in any case enter the coordination sphere of the lanthanoid. The n = 9 phase takes the form [Ln(OH2)9]I3, the nine-coordinate lanthanoid environment stereochemistry being tricapped trigonal-prismatic, while the n = 10 phase is [Ln(OH2)8]I3.2H2O, the eight-coordinate lanthanoid environment being square-antiprismatic.


1997 ◽  
Vol 50 (6) ◽  
pp. 621 ◽  
Author(s):  
Robert D. Hart ◽  
Graham A. Bowmaker ◽  
Eban N. de Silva ◽  
Brian W. Skelton ◽  
Allan H. White

Crystallization of 1 : 2 mixtures of the copper(I) halides CuX, X = Cl, Br, I, with triphenylstibine from acetonitrile yields adducts of 1 : 2 CuX/SbPh3 stoichiometry, confirmed by single-crystal X-ray structure determinations. The three complexes are isomorphous, monoclinic, P 21/c, a ≈ 24·3, b ≈ 14·2, c ≈ 20 Å, β 110°, Z = 4 dimers; conventional R on F were 0·047, 0·044 and 0·045 for No 11247, 4673 and 10418 independent ‘observe’ (I > 3σ(I)) reflections respectively. The complexes, also isomorphous with some related species, e.g. 1 : 2 AgBr,I/AsPh3, are dimers: [(Ph3Sb)2Cu(µ-X)2Cu(SbPh3)2]. The chloride is also recorded as a chloroform disolvate, isomorphous with its arsine analogue, being monoclinic, C 2/c, a 21·486(9), b 17· 925(9), c 19·972(7) Å, β 91·31(3)°, Z = 4 dimers, R 0·057 for No 3756. The far-infrared spectra of [(Ph3Sb)2Cu(µ-X)2Cu(SbPh3)2] (X = Br, I) showed no clear v(CuX) bands, in contrast to the situation reported previously for the corresponding Ph3As compounds. A possible v(CuCl) band is observed in the X = Cl complex at 219 cm-1 , but this occurs in a region where there is also significant absorption in the other two compounds. The absence of strong v(CuX) bands in these complexes is consistent with the situation observed previously for the 3 : 1 compounds [(Ph3Sb)3CuX].


1999 ◽  
Vol 52 (6) ◽  
pp. 459 ◽  
Author(s):  
Cameron J. Kepert ◽  
Lu Wei-Min ◽  
Peter C. Junk ◽  
Brian W. Skelton ◽  
Allan H. White

Room-temperature single-crystal X-ray structure determinations carried out on ‘maximally’ hydrated rare earth(III) trifluoroacetates, Ln(tfa)3.x H2O, crystallized at room temperature, show the Ln = La, Ce adducts to be isomorphous and monoclinic, P 21/c, a ≈ 11·9, b ≈ 12·8, c ≈ 9·8 8 Å, β ≈ 103·7°, Z = 4; they are trihydrates. The Ln = Pr, Lu (and, implicitly, intermediate Ln) adducts are also monoclinic, P 21/c, Z = 4, and trihydrates, but of a different polymorph, with a ≈ 9·2, b 18·8, c ≈ 9·8 Å, β ≈ 114°. For the four determinations, conventional R values on |F| were 0·038, 0·032, 0·036, and 0·034 for No 2952, 4821, 4544, and 4092 independent ‘observed’ (I > 3σ(I)) diffractometer reflections respectively. The Ln = La, Ce adducts are two-dimensional polymers, the sheets parallel to the bc plane; the other systems are binuclear, the two metal atoms being linked by four bridging carboxylate O-tfa-O′ ligands. In both structural types, the metal atoms are eight-coordinate, but differ in the number of water molecules (2 cf. 3) in the O8 array. Extension of previous studies by single-crystal X-ray methods on the structural characterization of trivalent rare earth trichloroacetates, ‘maximally’ hydrated at local ambience, Ln(tca)3.x H2O, suggests the following arrays to be prevalent. The Ln = La adduct is a pentahydrate, monoclinic, P21/c, a 5·636(7), b 22·454(4), c 16·58(1) Å, β 90·52(8)°, Z = 4 f.u., R 0·035 for No 4154. The compound is a linear polymer along a, successive nine-coordinate La (separated by a) being linked by three O-tca-O′ bridging ligands at the opposite faces of a tricapped trigonal prismatic array, the equatorial sites being filled by water molecules. The Ln = Ce adduct is a trihydrate, monoclinic, P 21/c, a 10·071(2), b 22·973(2), c 20·222(5) Å, b 119·48(2)°, Z= 8 f.u., R 0·050 for No 5019. The array is also linear polymeric, but with successive Ce being linked alternately now by sets of two and then four O-tca-O′ bridging carboxylates along b, the Ln = Ce coordination number being diminished (relative to La) to eight with the coordination of two water molecules to each metal. Ln = Pr, Lu (and, presumptively, intermediate Ln) are dihydrates, triclinic, P 1, a ≈ 11·70, b ≈ 12·8, c ≈ 15·3 Å, α ≈ 71, β ≈ 77·85, γ ≈ 65·5°, Z = 4 f.u., R 0·056, 0·059 for No 5650, 5398. The array is a linear polymer, similar to that of the Ln = Ce adduct but alongside the bridging acetate pair one of the water molecules now bridges, resulting in a stepped Ln 1 array (along c) rather than a quasi-straight one as is found for the Ln = Ce (and La) adduct. Structure determinations are also recorded for rare earth(III) trichloroacetate ethanol trisolvates, Ln(tca)3.3EtOH. Adducts of Ln = La, Yb (and, implicitly, intermediate Ln) are isomorphous, triclinic, P 1, a ≈ 12, b ≈ 11·8, c ≈ 11·4 Å, α ≈ 114, β ≈ 100, γ ≈ 104°, Z = 2 f.u., R 0·056, 0·050 for No 3843, 4171. The complexes are centrosymmetric dimers [(EtOH)3(tca-O)Ln(O-tca-O′)4Ln(O-tca)(HOEt)3], the two metal atoms being linked by four O-tca-O′ bridging carboxylate groups; the metal atoms are eight-coordinate, the other four sites being occupied by four oxygen atoms from unidentate ethanol and carboxylate moieties. Bis(bis(2-pyridyl)aminium) bis(diaquatetrakis(trichloroacetato)lanthanate(III)), 2(dpaH+) [(H2O)2-(tca-O)(tca-O,O′)2La(O-tca-O′)2La(O,O′-tca)2(O-tca)(OH2)2]2-, is triclinic, P 1, a, 13·901(2), b 13·764(3), c 10·073(2) Å, α 104·04(2), β 108·93(2), γ 101·50(2)°, Z = 1 binuclear f.u., R 0·045 for No 4999. The anion is binuclear, the two nine-coordinate lanthanum atoms being linked by a pair of bridging O-carboxylate-O′ groups. The other seven sites of the LaO9 array are occupied by a pair of O,O′ -chelating and one O-unidentate carboxylate groups and a pair of water molecules.


2011 ◽  
Vol 66 (3) ◽  
pp. 213-220
Author(s):  
Hagen Grossholz ◽  
Oliver Janka ◽  
Thomas Schleid

First attempts to synthesize a lanthanoid(III) oxide fluoride sulfide were successful by reacting DyF3 and Dy2O3 with dysprosium and sulfur in a 2 : 5 : 1 : 3 molar ratio at 850 ◦C in tightly sealed tantalum ampoules. In analogy to the dysprosium compound Dy3OF5S, the other representatives of the M3OF5S series with M = Nd, Sm, Gd-Ho could be prepared as well. Almost phase-pure samples were obtained under similar flux-assisted (NaCl) conditions according to 2M +5MF3 +M2O3 + 3S →3M3OF5S. In the hexagonal crystal structure (space group: P63/m; a ≈ 961 - 939 pm, c ≈ 378 - 367 pm; c/a≈0.39,Vm ≈91 - 84 cm3 mol−1, Z = 2), the M3+ cations reside in ninefold anionic coordination realized as tricapped trigonal prisms formed by seven light (O2−/F−) and two heavier S2− anions. One light-anion position exhibits the exclusive character of F− in trigonal non-planar coordination (CN = 3), while the other position with a tetrahedral cationic environment (CN = 4) is mixed occupied by F− and O2− in a 2 : 1 ratio. The S2− anions are coordinated in a trigonal prismatic way by six M3+ cations. From the data of single-crystal X-ray structure analyses, no indication of any ordering for the O2− and F− anions could be obtained, but bond-valence and MAPLE calculations confirmed the results of electron-beam microanalyses carried out earlier to reveal ordered models for Dy3OF5S.


2020 ◽  
Vol 73 (6) ◽  
pp. 462
Author(s):  
Eric J. Chan ◽  
Jack M. Harrowfield ◽  
Brian W. Skelton ◽  
Alexandre N. Sobolev ◽  
Allan H. White

Adducts of the form Ln(pic)3(tmp)3 (Ln=lanthanide(iii); pic=picrate=2,4,6-trinitrophenoxide; tmp=trimethylphosphate, (MeO)3PO) have been prepared for extremal Ln=La, Lu and some intermediate members, also Y, and characterised by single crystal X-ray structure determinations as unsolvated, mononuclear, molecular species. The lanthanide atom has nine-coordinate, tri-capped trigonal prismatic stereochemistry in all cases, the picrate components behaving as O,O′-bidentate ligands chelating through the phenoxy- and an adjacent O-nitro oxygen atom, thus: [Ln(tmp-O)3(pic-O,O′)3]. Two isomeric forms are found, one mer in which the three unidentate tmp-O ligands coordinate in cis-sites spanning the upper and lower triangles and a capping site of the coordination sphere, and fac, in which all three unidentate ligands occupy the mutually cis-sites of one triangular face. The mer isomer has been described as an isomorphous series in a monoclinic P21/c, Z 4, form, for Ln=La, Ce, Pr, Nd, Sm, Gd, Lu, and Y, presumptively accessible for the full gamut of Ln. The fac-isomer also crystallises in a monoclinic P21/c form, Z 8, two independent molecules of similar stereochemistry here comprising the asymmetric unit and described for Ln=Eu, Lu(isomorphous); it has also been described in a triclinic P, Z 2 form for Ln=La.


Sign in / Sign up

Export Citation Format

Share Document