Kinetic studies on the imines derived from reaction of 2-Amino-2-hydroxymethylpropane-1,3-diol with 2-Hydroxybenzaldehyde and with 1-Hydroxy-2-naphthaldehyde. Hydrolysis kinetics, and evidence for catalysis by the phenolate (ortho-O-) group in the imine formation reaction

1983 ◽  
Vol 36 (11) ◽  
pp. 2327 ◽  
Author(s):  
RMB Singh ◽  
L Main

pH-rate profiles are reported for the hydrolysis of 2-[[{2-hydroxy-1,1-di(hydroxymethyl)ethyl}-imino]methyl]phenol (1) and 1-[[{2-hydroxy-1,1-di(hydroxymethyl)ethyl}imino]methyl]-2-naphthol (2). Rate coefficients for possible contributing reactions are established and compared. Measurement of the rate of hydrolysis in deuterium oxide of (1) in the neutral plateau region of the pH-rate profile shows that the imine (1) is about 1.6 times more reactive in H2O than in D2O, and possible contributing factors to this solvent isotope effect are considered. Also reported are rate data for formation of (1) from 2-amino-2-hydroxymethylpropane-1,3-diol and 2-hydroxybenzaldehyde which show the latter to be almost as reactive in the anionic as in the neutral form; this suggests a base catalysis role by the phenolate oxygen in imine formation.

1975 ◽  
Vol 53 (6) ◽  
pp. 869-877 ◽  
Author(s):  
B. Rossall ◽  
R. E. Robertson

The temperature dependence of the rate of hydrolysis of benzoic, phthalic, and succinic anhydrides have been determined in H2O and D2O under "neutral" conditions. Corresponding data have been obtained for methyl trifluoroacetate. While both series supposedly react by the same BAc2 mechanism, remarkable differences are made obvious by this investigation. Possible sources of such differences are proposed.


1982 ◽  
Vol 35 (7) ◽  
pp. 1357 ◽  
Author(s):  
TJ Broxton

The hydrolysis of 2-acetyloxybenzoic acid in the pH range 6-12 has been studied in the presence of micelles of cetyltrimethylammonium bromide (ctab) and cetylpyridinium chloride (cpc). In the plateau region (pH 6-8) the hydrolysis is inhibited by the presence of micelles, while in the region where the normal BAC2 hydrolysis (pH > 9) occurs the reaction is catalysed by micelles of ctab and cpc. The mechanism of hydrolysis in the plateau region is shown to involve general base catalysis by the adjacent ionized carboxy group both in the presence and absence of micelles. This reaction is inhibited in the presence of micelles because the substrate molecules are solubilized into the micelle and water is less available in this environment than in normal aqueous solution.


1964 ◽  
Vol 42 (6) ◽  
pp. 1456-1472 ◽  
Author(s):  
T. E. Timell

First-order rate coefficients and energies and entropies of activation have been determined for the acid-catalyzed hydrolysis of a number of methyl D-glycopyranosides and disaccharides. The relation between the logarithm of the rate coefficients and values for Hammett's acidity function was linear, although different for different acids. All compounds had entropies of activation indicating a unimolecular reaction mechanism. Glucosides of tertiary alcohols were hydrolyzed very rapidly, triethylmethyl β-D-glucopyranoside, for example, 30,000 times taster than the corresponding methyl compound.Increase in size of the aglycone caused a slight increase in the rate of hydrolysis of β-D-glucopyranosides, steric hindrance thus being of no significance. Electron-attracting substituents in the aglycone had little or no influence on the rate of hydrolysis, obviously because they would tend to lower the equilibrium concentration of the conjugate acid, while facilitating the subsequent heterolysis, the two opposing effects more or less cancelling out. These results were discussed in connection with recent studies on the acid hydrolysis of various phenyl glycopyranosides and with reference to the postulated occurrence of an activating inductive effect in oligo- and poly-saccharides containing carboxyl or other electronegative groups at C-5. It was concluded that there is little evidence for the existence of any such effect and that, for example, pseudoaldobiouronic acids should be hydrolyzed at the same rate as corresponding neutral disaccharides.


1973 ◽  
Vol 133 (4) ◽  
pp. 623-628 ◽  
Author(s):  
A. Neuberger ◽  
Wendy A. Ratcliffe

The hydrolysis of the model compound 2-O-methyl-4,7,8,9-tetra-O-acetyl-N-acetyl-α-d-neuraminic acid and neuraminidase (Vibrio cholerae) closely resembled that of the O-acetylated sialic acid residues of rabbit Tamm–Horsfall glycoprotein. This confirmed that O-acetylation was responsible for the unusually slow rate of acid hydrolysis of O-acetylated sialic acid residues observed in rabbit Tamm–Horsfall glycoprotein and their resistance to hydrolysis by neuraminidase. The first-order rate constant of hydrolysis of 2-methyl-N-acetyl-α-d-neuraminic acid by 0.05m-H2SO4 was 56-fold greater than that of 2-O-methyl-4,7,8,9-tetra-O-acetyl-N-acetyl -α-d-neuraminic acid. Kinetic studies have shown that in the pH range 1.00–3.30, the observed rate of hydrolysis of 2-methyl-N-acetyl-α-d-neuraminic acid can be attributed to acid-catalysed hydrolysis of the negatively charged CO2− form of the methyl ketoside.


2005 ◽  
Vol 83 (9) ◽  
pp. 1483-1491 ◽  
Author(s):  
Eduardo Humeres ◽  
Maria de Nazaré M. Sanchez ◽  
Conceição ML Lobato ◽  
Nito A Debacher ◽  
Eduardo P. de Souza

The hydrolysis of ethyl N-ethylthioncarbamate (ETE) at 100 °C was studied in the range of 7 mol/L HCl to 4 mol/L NaOH. The pH–rate profile showed that the hydrolysis occurred through specific acid catalysis at pH < 2, spontaneous hydrolysis at pH 2–6.5, and specific basic catalysis at pH > 6.5. The Hammett acidity plot and the excess acidity plot against X were linear. The Bunnett–Olsen plot gave a negative slope indicating that the conjugate acid was less hydrated than the neutral substrate. It was concluded that the acid hydrolysis occurred by an A1 mechanism. The neutral species hydrolyzed with general base catalysis shown by the Brønsted plot with β = 0.48 ± 0.04. Water acted as a general base catalyst with (pseudo-)first-order rate constant, kN = 3.06 × 10–7 s–1. At pH > 6.5 the rate constants increased, reaching a plateau at high basicity. The basic hydrolysis rate constant of ethyl N,N-diethylthioncarbamate, which must react by a BAc2 mechanism, increased linearly at 1–3 mol/L NaOH with a second-order rate constant, k2 = 2.3 × 10–4 (mol/L)–1 s–1, which was 10 times slower than that expected for ETE. Experiments of ETE in 0.6 mol/L NaOH with an excess of ethylamine led to the formation of diethyl thiourea, presenting strong evidence that the basic hydrolysis occurred by the E1cb mechanism. In the rate-determining step, the E1cb mechanism involved the elimination of ethoxide ion from the thioncarbamate anion, producing an isothiocyanate intermediate that decomposed rapidly to form ethylamine, ethanol, and COS.Key words: alkylthioncarbamate esters, ethyl N-ethylthioncarbamate, ethyl N,N-diethylthioncarbamate, hydrolysis, mechanism.


1976 ◽  
Vol 153 (2) ◽  
pp. 329-337 ◽  
Author(s):  
E J Walker ◽  
G B Ralston ◽  
I G Darvey

Evidence is presented from three experimental systems to support the allosteric model of Walker et al. (1975) (Biochem. J. 147, 425-433) which explains the substrate-concentration-dependent transition observed in the RNAase (ribonuclease)-catalysed hydrolysis of 2‘:3’-cyclic CMP (cytidine 2‘:3’-cyclic monophosphate). 1. Kinetic studies of the initial rate of hydrolysis of 2‘:3’-cyclic CMP show that the midpoint of the transition shifts to lower concentrations of 2‘:3’-cyclic CMP in the presence of the substrate analogues 3′-CMP, 5′-CMP, 3′-AMP, 3′-UMP and Pi; 2′-CMP and 2′-UMP do not cause such a shift. 2. Trypsin-digestion studies show that a conformational change in RNAase to a form less susceptible to tryptic inactivation is induced in the presence of the substrate analogues 3′-CMP, 5′-CMP, 3′-AMP, and 3′-UMP. 2′-CMP, 2′-AMP and 2′-UMP do not induce this conformational change. 3. Equilibrium-dialysis experiments demonstrate the multiple binding of molecules of 3′-CMP, 3′-AMP and 5′-AMP to a molecule of RNAase. 2′-CMP binds the ratio 1:1 over the analogue concentration range studied.


1973 ◽  
Vol 51 (4) ◽  
pp. 597-603 ◽  
Author(s):  
E. C. F. Ko ◽  
R. E. Robertson

The pseudo-thermodynamic parameters, ΔH≠, ΔS≠, and ΔCp≠ and the kinetic solvent isotope effects have been determined for the three alkyl-phosphorochloridates, where the alkyl group is ethylisopropyl and n-propyl; for tetra-methyl and tetra-ethyl phosphorodiamidic chlorides; the di-n-propyl and di-isopropyl analog, the di(isopropylmethylcarbinyl)phosphorochloridate and the tetra-ethylthiophosphorodiamidic chloride. These compounds have a potential relationship to compounds used as insecticides and as polymers. The mechanism of reaction is discussed on the basis of these data.


1999 ◽  
Vol 77 (5-6) ◽  
pp. 997-1004 ◽  
Author(s):  
X L Armesto ◽  
M Canle L. ◽  
V García ◽  
J A Santaballa

A kinetic study of the mechanism of oxidation of Ala-Gly and Pro-Gly by aqueous chlorine has been carried out. Among other experimental facts, the deuterium solvent isotope effects were used to clarify the mechanisms involved. In a first stage, N-chlorination takes place, and then the (N-Cl)-dipeptide decomposes through two possible mechanisms, depending on the acidity of the medium. The initial chlorination step shows a small isotope effect. In alkaline medium, two consecutive processes take place: first, the general base-catalyzed formation of an azomethine (β ca. 0.27), which has an inverse deuterium solvent isotope effect (kOH-/kOD- ~ 0.8). In a second step, the hydrolysis of the azomethine intermediate takes place, which is also general base-catalyzed, without deuterium solvent isotope effect, the corresponding uncatalyzed process having a normal deuterium solvent isotope effect (kH2O/kD2O ~ 2). In acid medium, the (N-Cl)-dipeptide undergoes disproportionation to a (N,N)-di-Cl-dipeptide, the very fast decomposition of the latter in deuterium oxide preventing a reliable estimation of the solvent isotope effect.Key words: chlorination, deuterium isotope effects, fractionation factors, peptide oxidation, water treatment.


2000 ◽  
Vol 279 (5) ◽  
pp. F841-F850 ◽  
Author(s):  
Alicia J. Allred ◽  
Debra I. Diz ◽  
Carlos M. Ferrario ◽  
Mark C. Chappell

Two of the primary sites of actions for angiotensin (ANG)-(1—7) are the vasculature and the kidney. Because little information exists concerning the metabolism of ANG-(1—7) in these tissues, we investigated the hydrolysis of the peptide in rat lung and renal brush-border membrane (BBM) preparations. Radiolabeled ANG-(1—7) was hydrolyzed primarily to ANG-(1—5) by pulmonary membranes. The ANG-converting enzyme (ACE) inhibitor lisinopril abolished the generation of ANG-(1—5), as well as that of smaller metabolites. Kinetic studies of the hydrolysis of ANG-(1—7) to ANG-(1—5) by somatic (pulmonary) and germinal (testes) forms of rat ACE yielded similar values, suggesting that the COOH-domain is responsible for the hydrolysis of ANG-(1—7). Pulmonary metabolism of ANG-(1—5) yielded ANG-(3—5) and was independent of ACE but may involve peptidyl or dipeptidyl aminopeptidases. In renal cortex BBM, ANG-(1—7) was rapidly hydrolyzed to mono- and dipeptide fragments and ANG-(1—4). Aminopeptidase (AP) inhibition attenuated the hydrolysis of ANG-(1—7) and increased ANG-(1—4) formation. Combined treatment with AP and neprilysin (Nep) inhibitors abolished ANG-(1—4) formation and preserved ANG-(1—7). ACE inhibition had no effect on the rate of hydrolysis or the metabolites formed in the BBM. In conclusion, ACE was the major enzymatic activity responsible for the metabolism of ANG-(1—7) in the lung, which is consistent with the ability of ACE inhibitors to increase the half-life of circulating ANG-(1—7) and raise endogenous levels of the peptide. An alternate pathway of metabolism was revealed in the renal cortex, where increased AP and Nep activities, relative to ACE activity, promote conversion of ANG-(1—7) to ANG-(1—4) and smaller fragments.


Sign in / Sign up

Export Citation Format

Share Document