Heterocyclic Tautomerism. IV. The Solution and Crystal Structures of 1-Aryl-3-phenyl-1,2,4-triazol-5-ones

1988 ◽  
Vol 41 (4) ◽  
pp. 419 ◽  
Author(s):  
AD Rae ◽  
CG Ramsay ◽  
PJ Steel

The title compounds are shown to exist in solution and in the solid state as 4H-tautomers. X-Ray crystal structure determinations show that 1,3-diphenyl-1,2,4-triazol-5-one exists as a dimeric pair of strongly hydrogen-bonded molecules and that 3-phenyl-1-(2-pyridyl)-1,2,4- triazol-5-one exists as the 4H-tautomer stabilized by a complex network of hydrogen bonding to water molecules.

2003 ◽  
Vol 58 (1) ◽  
pp. 74-84 ◽  
Author(s):  
Giannis S. Papaefstathiou ◽  
Robby Keuleers ◽  
Constantinos J. Milios ◽  
Catherine P. Raptopoulou ◽  
Aris Terzis ◽  
...  

AbstractThe ligand N.N'-dimethylurea (DMU) is used to propagate the octahedral coordination geom- etry of [Co(DMU)6]2+ into 1D and 2D assemblies via a combination of coordinative bonds and interionic hydrogen-bonding. Compounds [Co(DMU)6](ClO4)2 (1), [Co(DMU)6](BF4)2 (2) and [Co(DMU)6](NO3)2 (3) have been prepared from the reactions of DMU and the appropriate hydrated cobalt(II) salts in EtOH. MeCN or Me2CO (only for 1) in the presence of 2,2-di- methoxypropane. Crystal structure determinations demonstrate the existence of [Co(DMU)6]2+ cations and CIO4- , BF4- or NO3- counterions. The great stability of the [Co(DMU)6]2+ cation in the solid state is attributed to a pseudochelate effect which arises from the existence of strong intracationic N-H···O(DMU) hydrogen bonds. The [Co(DMU)6]2+ cations and counterions self- assemble to form a hydrogen-bonded ID architecture in 1, and different 2D hydrogen-bonded networks in 2 and 3. The precise nature of the resulting supramolecular structure is influenced by the nature of the counterion. Two main motifs of intermolecular (interionic) hydrogen bonds have been observed: N-H ···O(ClO4-, NO3-) or N-H ··· F(BF4-) and weak C-H F(BF4- ) or C-H-O(NO3- ) hydrogen bonds. The complexes were also characterized by vibrational spec- troscopy (IR, far-IR. low-frequency Raman). The spectroscopic data are discussed in terms of the nature of bonding and the know;n structures.


1984 ◽  
Vol 62 (3) ◽  
pp. 540-548 ◽  
Author(s):  
T. Stanley Cameron ◽  
Walter J. Chute ◽  
Osvald Knop

The crystal structure of N-methylaminomethanesulfonic acid (P212121, a = 5.455(1) Å, b = 7.791(1) Å, c = 11.925(2) Å, Z = 4) consists of +MeNH2CH2SO3− zwitterions hydrogen-bonded to form infinite chains about screw axes parallel to a. In the structure of MeN(CH2SO3Na)2•2H2O (Pbcn, a = 10.469(1) Å, b = 6.039(3) Å, c = 17.549(3) Å, Z = 4), layers of MeN(CH2SO3−)2 anions alternate with layers of Na+ ions parallel to (001). The anions are linked by [Formula: see text] bonds between the water molecules and the O(2) atoms of the sulfonate groups. Because of the twofold orientational disorder of the N—CH3 groups the space group Pbcn is only statistical.The S—C, C—N, and S—O bond lengths in solid aminosulfonic acids and their salts are discussed with a view to detecting the existence of effects due to deprotonation of the amino group and to hydrogen bonding.


2012 ◽  
Vol 68 (8) ◽  
pp. o2357-o2357 ◽  
Author(s):  
María-Guadalupe Hernández Linares ◽  
Sylvain Bernès ◽  
Marcos Flores-Alamo ◽  
Gabriel Guerrero-Luna ◽  
Anselmo A. Martínez-Gallegos

Diosgenin [or (22R,25R)-spirost-5-en-3β-ol] is the starting material of the Marker degradation, a cheap semi-synthesis of progesterone, which has been designated as an International Historic Chemical Landmark. Thus far, a single X-ray structure for diosgenin is known, namely its dimethyl sulfoxide solvate [Zhanget al.(2005).Acta Cryst.E61, o2324–o2325]. We have now determined the structure of the hemihydrate, C27H42O3·0.5H2O. The asymmetric unit contains two diosgenin molecules, with quite similar conformations, and one water molecule. Hydroxy groups in steroids and water molecules form O—H...O hydrogen-bondedR54(10) ring motifs. Fused edge-sharingR(10) rings form a backbone oriented along [100], which aggregates the diosgenin molecules in the crystal structure.


1988 ◽  
Vol 43 (10) ◽  
pp. 1279-1284 ◽  
Author(s):  
Mervat El Essawi ◽  
H Gosmann ◽  
D Fenske ◽  
F Schmock ◽  
K Dehnicke

Triphenylmethylphosphonium nitrite and formate have been prepared by the reaction of [PPh3Me]I with silver nitrite, and lead formate, respectively, in aqueous solutions. [PPh3Me]NO2 (1) forms pale yellow crystals, and [PPh3Me]HCO2·H2O (2) forms white crystals. Both compounds are soluble in water, ethanol, and dichloromethane. In moist air 2 is hydrated to yield [PPh3Me]HCO2·2H2O (3). The compounds were characterized by their IR spectra, 1 and 2 also by X-ray crystal structure determinations.[PPh3Me]NO2 (1): space group P21/n, Z = 4, 2088 independent observed reflexions, R = 0.062. Lattice dimensions (20 °C): a = 914.7(3), b = 1887.5(9), c = 1080.0(4) pm, β = 110.29(3)°. The compound consists of PPh3Me+ ions and NO2- anions with bond lengths of 114.2(6) pm and a bond angle of 124.1(7)°. [PPh3Me]HCO2·H2O (2): space group P21/n, Z = 4, 2973 independent observed reflexions, R = 0.069. Lattice dimensions (-20 °C): a = 931(2), b = 1558(3), c = 1281(2) pm, β = 105.9(1)°. The compound consists of PPh3Me+ ions and formate anions which form centrosymmetric dimeric units [HCO2·H2O]22- through hydrogen bridges of the water molecules. Bond lengths CO 122.4(4) and 120.9(4) pm. bond angle OCO 129.9(4)°.


1980 ◽  
Vol 33 (2) ◽  
pp. 313 ◽  
Author(s):  
PR Jefferies ◽  
BW Skelton ◽  
B Walter ◽  
AH White

Following the suggestion made earlier, on the basis of solution spectroscopy, that a number of eriostyl/nitrobenzoate compounds form charge-transfer self-complexes, a number of these have been investigated structurally by single-crystal X-ray diffraction methods in order to ascertain the presence or otherwise of such interactions in the solid state. The substances thus studied were eriostyl 3,5-dinitrobenzoate (1), eriostyl p-nitrobenzoate (2), tetrahydroeriostyl 3,5-dinitrobenzoate (3), and eriostemyl 3,5-dinitrobenzoate (4);* structure determinations in all cases, although displaying the presence of strong charge-transfer interactions from the two moieties of each molecule, show that the interactions in the solid state are intermolecular in nature.


2005 ◽  
Vol 60 (7) ◽  
pp. 753-757 ◽  
Author(s):  
Claudia Bromant ◽  
Wassiliki Nika ◽  
Ingo Pantenburg ◽  
Gerd Meyer

Pr(Man)3(ManH) and Er(Man)3(H2O)2 (ManH = mandelic acid) have been synthesized by slow evaporation of aqueous solutions of rare-earth salts (Pr(OH)3, ErCl3 · 6H2O) with mandelic acid (α-hydroxy-phenyl acetic acid, C8H8O3) and their crystal structures were determined on the basis of X-ray data. In the crystal structure of Pr(Man)3(ManH) (1) (monoclinic, P21, a = 574.8(1), b = 3042.5(4), c = 908.4(1) pm, β = 92.09(2)°, Z = 2) the Pr(III) ions are surrounded by eight oxygen atoms in a distorted square antiprismatic fashion with distances Pr-O in the range 241 to 254 pm. These polyhedra are connected by coordinative bonds to chains paralleling the crystallographic [100] direction. In Er(Man)3(H2O)2 (2) (orthorhombic, P212121, a = 577.7(3), b = 1816.3(13), c = 2329.4(13) pm, Z = 4) the crystal structure contains isolated complexes with octa-coordinated erbium atoms chelated by three mandelate anions through one of their carboxylate oxygen atoms and the alcoholic hydroxyl group. Two water molecules complete the distorted square antiprismatic coordination sphere.


1990 ◽  
Vol 43 (10) ◽  
pp. 1697 ◽  
Author(s):  
GA Bowmaker ◽  
PC Healy ◽  
LM Engelhardt ◽  
JD Kildea ◽  
BW Skelton ◽  
...  

The crystal structures of [Cu(Pme3)4]X (X = Cl , Br, I) and of [M(PPh3)4] [PF6] (M = Cu, Ag) have been determined by single-crystal X-ray diffraction methods at 295 K. The former compounds contain nearly tetrahedral [Cu(PMe3)4]+ ions on sites of m symmetry with mean Cu-P bond lengths of 2.270, 2.271 and 2.278 Ǻ for X = Cl , Br and I respectively. The latter compounds contain [M(PPh3)4]+ ions on sites of 3 symmetry. In the M =Ag complex the coordination environment is close to tetrahedral, but in the M =Cu complex the length of the axial Cu-P bond [2.465(2)Ǻ] is significantly shorter than that of the off-axis bonds [2.566(2)Ǻ]. Possible reasons for this are discussed.


1987 ◽  
Vol 40 (12) ◽  
pp. 2097 ◽  
Author(s):  
DJ Fuller ◽  
DL Kepert ◽  
BW Skelton ◽  
AH White

Crystal structure determinations of (LH)2(B10H10), (1), and (LH2)(B10H10), (2), L = 2,2'- bipyridine , have been carried out by single-crystal X-ray diffraction methods at 295 K, being refined by full-matrix least squares to residuals of 0.041, 0.047 for 1758, 1771 'observed' independent reflections respectively. Crystals of (1) are monoclinic, P21/n, a 12.040(7), b 17.71(1), c 11.142(4) �, β 101.78(4)�, Z 4. Crystals of (2) are monoclinic, P21/c, a 9.937(4), b 10.837(3), c 14.856(5) �, β 109 2l(3)�, Z 4. The colour of the compounds is accounted for by charge-transfer interactions of a novel type, namely between the positively charged cationic acid hydrogen atoms and the negatively charged non-apical hydrogen atoms of the anion. In yellow (1), these distances are 2.26(5) �, while in red (2), they are much shorter, being 1.89(4), 1.97(3) �.


IUCrData ◽  
2018 ◽  
Vol 3 (8) ◽  
Author(s):  
Aarón Pérez-Benítez ◽  
Sylvain Bernès

The crystal structure of ammonium metavanadate, NH4VO3, a compound widely used as a starting material for the synthesis of vanadium and polyoxidovanadate compounds, had been determined twice using single-crystal X-ray data [Syneček & Hanic (1954). Czech. J. Phys. 4, 120–129 (Weissenberg data); Hawthorne & Calvo (1977). J. Solid State Chem. 22, 157–170 (four-circle diffractometer data)]. Its structure is now redetermined at higher resolution using Ag Kα radiation, and the result is compared with the former refinements. Structural data for the polymeric [VO3]∞ chain remain unchanged, while more accurate parameters are obtained for the ammonium cation, improving the description of hydrogen-bonding interactions in the crystal structure.


Sign in / Sign up

Export Citation Format

Share Document