Runoff and soil loss from long-term tillage treatments under natural rainfall

1995 ◽  
Vol 35 (7) ◽  
pp. 1059
Author(s):  
PJ Barker

No abstract available.

2015 ◽  
Vol 10 (2) ◽  
pp. 593-601 ◽  
Author(s):  
Mohan Lal ◽  
Surendra Mishra

The present study was carried out to explore the existence of relationship among rainfall, runoff, soil loss and nutrient losses from the agricultural plots located at Roorkee, Uttarakhand, India. The natural rainfall generated runoff and soil loss from the 12 agricultural runoff plots (with four land uses namely sugarcane, maize, black gram and fallow land and having slope 5%, 3% and 1% for each land use) were recorded during monsoon period (June 2013 to September 2013). The highest grade plot was found to yield the highest magnitude of runoff (i.e. runoff coefficient) for a given land use and soil type. The soil loss from the experimental plots of various characteristics shown that for given rainfall input, on average, the plots with sugarcane land use were found to produce high amount of soil loss followed by Maize, fallow land and Blackgram. The nutrients losses were very low in the sediment as compared to the dissolved losses. Nutrients concentrations in sediment and runoff water were found to be more during the critical period. The higher limit of seasonal sediment yield obtained from the present study is lower than soil loss tolerance limit of 2.5 to 12.5 t/ha /yr for Indian subcontinent.


1983 ◽  
Vol 5 (1) ◽  
pp. 3 ◽  
Author(s):  
GG Johns

The ridges of the Cobar pediplain generally have only a sparce herbage cover. Much of the incident rainfall is reputed to run off, perpetuating the low pasture productivity and causing erosion. Woody shrubs have often invaded the woodlands of the pediplain. On some gentler sloping (1%) ridges dense patches of shrubs surround large eucalypts and together are known as 'thickets'. Between these thickets relatively sparsely shrubbed areas ('interthickets') occur. Runoff from small plots situated in thicket and interthicket areas of shrub invaded poplar box woodland was recorded during 1975-1981. Half the plots had been partially cleared by pushing over all shrubs with a bulldozer ('shrub-pushed', in contrast to 'unpushed'). Soil losses from the plots were measured over a four year period. Rainfall during the study was 26% greater than the long term average for the area, and provided many runoff events, particularly from intense summer storms. Runoff averaged 26% of rainfall for unpushed interthicket areas while thicket runoff was negligible. Runoff from the shrub-pushed plots was c. 25% less than from their unpushed counterparts, but this difference was not significant at P < 0.05. During the December-March period monthly runoff from unpushed interthicket plots averaged 41% of monthly rainfall in excess of 12 mm, while for the other eight months runoff averaged 24% of monthly rainfall in excess of 9 mm. Soil losses were greater during the stormier part of the year, with long term soil loss rates equivalent to 25 mm per 1000 years from enclosed interthicket plots and 55 mm per 1000 years from the gra7ed interthicket plots. Shrub-pushing appeared to increase soil losses in the short term but after two years soil loss rates decreased to be less than those from unpushed plots. Estimates of likely interthicket runoff based on long term rainfall records had a median value of 77 mm per year, or only 64% of that observed during the study period. Over the 88 years the 5 year moving average of estimated runoff fell to as low as 40 mm per year. The results are discussed in the context of waterspreading.


2017 ◽  
Vol 43 (1) ◽  
pp. 119 ◽  
Author(s):  
M. Kirchhoff ◽  
J. Rodrigo-Comino ◽  
M. Seeger ◽  
J.B. Ries

German vineyards are one of the land uses most prone to soil erosion. Due to their placement on mainly steep slopes and non-conservative cultivation practices, runoff and soil loss are a serious problem for wine growers. In the Saar-Mosel valley (Rhineland-Palatinate, Germany), there is a tendency towards organic management of vineyards with protective grass cover in the inter-rows. Since there is a lack of information about organic-conventional tillage in German vineyards related to soil erosion processes, this study presents a comparison between these two soil management practices. For this purpose, 22 rainfall simulations were performed as well as a medium-term monitoring by using 4-paired Gerlach troughs in two experimental sites in the Saar-Mosel valley. The mean simulated runoff coefficient and suspended sediment load in conventional vineyards amounted up to 23.3% and 33.75 g m-2, respectively. In the organic site, runoff and soil loss were only recorded in one out of the 11 simulations. Runoff and sediment was collected in the Gerlach troughs for 33 natural rainfall events. In the conventional vineyard, the total measured soil loss was 3314.63 g m-1 and 6503.77 g m-1 and total runoff volumes were 105.52 L m-1 and 172.58 L m-1. In the organic site, total soil losses reached 143.16 g m-1 and 258.89 g m-1 and total runoff was 21.65 L m-1 and 12.69 L m-1. When soil loss was measured without corresponding runoff or precipitation, soil erosion was activated by tillage or trampling. Finally, the conventional vineyard showed a higher variability in soil loss and runoff suggesting less predictable results.


Author(s):  
Nguyễn Quang Việt ◽  
Trương Đình Trọng ◽  
Hồ Thị Nga

Vinh Linh, the northern district of Quang Tri province is characterized by a diversified topography with a large variety of elevations, high rainfall, and decreasing land cover due to forest exploiting for cultivation land. Thus, there is a high risk of erosion, soil fertility washout. With the support of GIS technology, the authors used the rMMF model to measure soil erosion. The input data of model including 15 coefficients related to topography, soil properties, climate and land cover. The simulations of rMMF include estimates of rainfall energy, runoff, soil particle detachment by raindrop, soil particle detachment by runoff, sediment transport capacity of runoff and soil loss. The result showed that amount of soil loss in year is estimated to vary between 0 kg/m2 minimum and 149 kg/m2 maximum and is divided into 4-classes of erosion. Light class almost covers the region researched (75.9% of total area), while moderate class occupies 8.1% of total area, strong classes only hold small area (16% of total area). Therefore, protection of the forest floor in sloping areas is one of the most effective methods to reduce soil erosion.


2013 ◽  
Vol 19 (5) ◽  
pp. 766-773
Author(s):  
Jinniu WANG ◽  
Geng SUN ◽  
Fusun SHI ◽  
Jiceng XU ◽  
Yan WU ◽  
...  

2014 ◽  
Vol 18 (9) ◽  
pp. 3763-3775 ◽  
Author(s):  
K. Meusburger ◽  
G. Leitinger ◽  
L. Mabit ◽  
M. H. Mueller ◽  
A. Walter ◽  
...  

Abstract. Snow processes might be one important driver of soil erosion in Alpine grasslands and thus the unknown variable when erosion modelling is attempted. The aim of this study is to assess the importance of snow gliding as a soil erosion agent for four different land use/land cover types in a subalpine area in Switzerland. We used three different approaches to estimate soil erosion rates: sediment yield measurements in snow glide depositions, the fallout radionuclide 137Cs and modelling with the Revised Universal Soil Loss Equation (RUSLE). RUSLE permits the evaluation of soil loss by water erosion, the 137Cs method integrates soil loss due to all erosion agents involved, and the measurement of snow glide deposition sediment yield can be directly related to snow-glide-induced erosion. Further, cumulative snow glide distance was measured for the sites in the winter of 2009/2010 and modelled for the surrounding area and long-term average winter precipitation (1959–2010) with the spatial snow glide model (SSGM). Measured snow glide distance confirmed the presence of snow gliding and ranged from 2 to 189 cm, with lower values on the north-facing slopes. We observed a reduction of snow glide distance with increasing surface roughness of the vegetation, which is an important information with respect to conservation planning and expected and ongoing land use changes in the Alps. Snow glide erosion estimated from the snow glide depositions was highly variable with values ranging from 0.03 to 22.9 t ha−1 yr−1 in the winter of 2012/2013. For sites affected by snow glide deposition, a mean erosion rate of 8.4 t ha−1 yr−1 was found. The difference in long-term erosion rates determined with RUSLE and 137Cs confirms the constant influence of snow-glide-induced erosion, since a large difference (lower proportion of water erosion compared to total net erosion) was observed for sites with high snow glide rates and vice versa. Moreover, the difference between RUSLE and 137Cs erosion rates was related to the measured snow glide distance (R2 = 0.64; p < 0.005) and to the snow deposition sediment yields (R2 = 0.39; p = 0.13). The SSGM reproduced the relative difference of the measured snow glide values under different land uses and land cover types. The resulting map highlighted the relevance of snow gliding for large parts of the investigated area. Based on these results, we conclude that snow gliding appears to be a crucial and non-negligible process impacting soil erosion patterns and magnitude in subalpine areas with similar topographic and climatic conditions.


1997 ◽  
Vol 77 (4) ◽  
pp. 669-676 ◽  
Author(s):  
S. C. Nolan ◽  
L. J. P. van Vliet ◽  
T. W. Goddard ◽  
T. K. Flesch

Interpreting soil loss from rainfall simulators is complicated by the uncertain relationship between simulated and natural rainstorms. Our objective was to develop and test a method for estimating soil loss from natural rainfall using a portable rainfall simulator (1 m2 plot size). Soil loss from 12 rainstorms was measured on 144-m2 plots with barley residue in conventional tillage (CT), reduced tillage (RT) and zero tillage (ZT) conditions. A corresponding "simulated" soil loss was calculated by matching the simulator erosivity to each storm's erosivity. High (140 mm h−1) and low (60 mm h−1) simulation intensities were examined. The best agreement between simulated and natural soil loss occurred using the low intensity, after making three adjustments. The first was to compensate for the 38% lower kinetic energy of the simulator compared with natural rain. The second was for the smaller slope length of the simulator plot. The third was to begin calculating simulator erosivity only after runoff began. After these adjustments, the simulated soil loss over all storms was 99% of the natural soil loss for CT, 112% for RT and 95% for ZT. Our results show that rainfall simulators can successfully estimate soil loss from natural rainfall events. Key words: Natural rainfall events, simulated rainfall, erosivity, tillage


Sign in / Sign up

Export Citation Format

Share Document