scholarly journals Effects of vertical cover structure of grass and shrub on reducing runoff and soil loss under natural rainfall in the loess hilly region

2022 ◽  
Vol 42 (1) ◽  
Author(s):  
邵奕铭,高光耀,刘见波,傅伯杰 SHAO Yiming
2015 ◽  
Vol 10 (2) ◽  
pp. 593-601 ◽  
Author(s):  
Mohan Lal ◽  
Surendra Mishra

The present study was carried out to explore the existence of relationship among rainfall, runoff, soil loss and nutrient losses from the agricultural plots located at Roorkee, Uttarakhand, India. The natural rainfall generated runoff and soil loss from the 12 agricultural runoff plots (with four land uses namely sugarcane, maize, black gram and fallow land and having slope 5%, 3% and 1% for each land use) were recorded during monsoon period (June 2013 to September 2013). The highest grade plot was found to yield the highest magnitude of runoff (i.e. runoff coefficient) for a given land use and soil type. The soil loss from the experimental plots of various characteristics shown that for given rainfall input, on average, the plots with sugarcane land use were found to produce high amount of soil loss followed by Maize, fallow land and Blackgram. The nutrients losses were very low in the sediment as compared to the dissolved losses. Nutrients concentrations in sediment and runoff water were found to be more during the critical period. The higher limit of seasonal sediment yield obtained from the present study is lower than soil loss tolerance limit of 2.5 to 12.5 t/ha /yr for Indian subcontinent.


2017 ◽  
Vol 43 (1) ◽  
pp. 119 ◽  
Author(s):  
M. Kirchhoff ◽  
J. Rodrigo-Comino ◽  
M. Seeger ◽  
J.B. Ries

German vineyards are one of the land uses most prone to soil erosion. Due to their placement on mainly steep slopes and non-conservative cultivation practices, runoff and soil loss are a serious problem for wine growers. In the Saar-Mosel valley (Rhineland-Palatinate, Germany), there is a tendency towards organic management of vineyards with protective grass cover in the inter-rows. Since there is a lack of information about organic-conventional tillage in German vineyards related to soil erosion processes, this study presents a comparison between these two soil management practices. For this purpose, 22 rainfall simulations were performed as well as a medium-term monitoring by using 4-paired Gerlach troughs in two experimental sites in the Saar-Mosel valley. The mean simulated runoff coefficient and suspended sediment load in conventional vineyards amounted up to 23.3% and 33.75 g m-2, respectively. In the organic site, runoff and soil loss were only recorded in one out of the 11 simulations. Runoff and sediment was collected in the Gerlach troughs for 33 natural rainfall events. In the conventional vineyard, the total measured soil loss was 3314.63 g m-1 and 6503.77 g m-1 and total runoff volumes were 105.52 L m-1 and 172.58 L m-1. In the organic site, total soil losses reached 143.16 g m-1 and 258.89 g m-1 and total runoff was 21.65 L m-1 and 12.69 L m-1. When soil loss was measured without corresponding runoff or precipitation, soil erosion was activated by tillage or trampling. Finally, the conventional vineyard showed a higher variability in soil loss and runoff suggesting less predictable results.


Author(s):  
Nguyễn Quang Việt ◽  
Trương Đình Trọng ◽  
Hồ Thị Nga

Vinh Linh, the northern district of Quang Tri province is characterized by a diversified topography with a large variety of elevations, high rainfall, and decreasing land cover due to forest exploiting for cultivation land. Thus, there is a high risk of erosion, soil fertility washout. With the support of GIS technology, the authors used the rMMF model to measure soil erosion. The input data of model including 15 coefficients related to topography, soil properties, climate and land cover. The simulations of rMMF include estimates of rainfall energy, runoff, soil particle detachment by raindrop, soil particle detachment by runoff, sediment transport capacity of runoff and soil loss. The result showed that amount of soil loss in year is estimated to vary between 0 kg/m2 minimum and 149 kg/m2 maximum and is divided into 4-classes of erosion. Light class almost covers the region researched (75.9% of total area), while moderate class occupies 8.1% of total area, strong classes only hold small area (16% of total area). Therefore, protection of the forest floor in sloping areas is one of the most effective methods to reduce soil erosion.


2013 ◽  
Vol 19 (5) ◽  
pp. 766-773
Author(s):  
Jinniu WANG ◽  
Geng SUN ◽  
Fusun SHI ◽  
Jiceng XU ◽  
Yan WU ◽  
...  

1997 ◽  
Vol 77 (4) ◽  
pp. 669-676 ◽  
Author(s):  
S. C. Nolan ◽  
L. J. P. van Vliet ◽  
T. W. Goddard ◽  
T. K. Flesch

Interpreting soil loss from rainfall simulators is complicated by the uncertain relationship between simulated and natural rainstorms. Our objective was to develop and test a method for estimating soil loss from natural rainfall using a portable rainfall simulator (1 m2 plot size). Soil loss from 12 rainstorms was measured on 144-m2 plots with barley residue in conventional tillage (CT), reduced tillage (RT) and zero tillage (ZT) conditions. A corresponding "simulated" soil loss was calculated by matching the simulator erosivity to each storm's erosivity. High (140 mm h−1) and low (60 mm h−1) simulation intensities were examined. The best agreement between simulated and natural soil loss occurred using the low intensity, after making three adjustments. The first was to compensate for the 38% lower kinetic energy of the simulator compared with natural rain. The second was for the smaller slope length of the simulator plot. The third was to begin calculating simulator erosivity only after runoff began. After these adjustments, the simulated soil loss over all storms was 99% of the natural soil loss for CT, 112% for RT and 95% for ZT. Our results show that rainfall simulators can successfully estimate soil loss from natural rainfall events. Key words: Natural rainfall events, simulated rainfall, erosivity, tillage


Sign in / Sign up

Export Citation Format

Share Document