Part 3. Present plate boundary and its evolution in the New Zealand region: Motion along the New Zealand Alpine Fault and a model for the formation of the Southern Alps

1975 ◽  
Vol 6 (2-3) ◽  
pp. 55-55
Author(s):  
D.A. Christoffel
2016 ◽  
Vol 445 ◽  
pp. 125-135 ◽  
Author(s):  
Catriona D. Menzies ◽  
Damon A.H. Teagle ◽  
Samuel Niedermann ◽  
Simon C. Cox ◽  
Dave Craw ◽  
...  

2021 ◽  
Author(s):  
Duna Roda-Boluda ◽  
Taylor Schildgen ◽  
Hella Wittmann-Oelze ◽  
Stefanie Tofelde ◽  
Aaron Bufe ◽  
...  

<p>The Southern Alps of New Zealand are the expression of the oblique convergence between the Pacific and Australian plates, which move at a relative velocity of nearly 40 mm/yr. This convergence is accommodated by the range-bounding Alpine Fault, with a strike-slip component of ~30-40 mm/yr, and a shortening component normal to the fault of ~8-10 mm/yr. While strike-slip rates seem to be fairly constant along the Alpine Fault, throw rates appear to vary considerably, and whether the locus of maximum exhumation is located near the fault, at the main drainage divide, or part-way between, is still debated. These uncertainties stem from very limited data characterizing vertical deformation rates along and across the Southern Alps. Thermochronology has constrained the Southern Alps exhumation history since the Miocene, but Quaternary exhumation is hard to resolve precisely due to the very high exhumation rates. Likewise, GPS surveys estimate a vertical uplift of ~5 mm/yr, but integrate only over ~10 yr timescales and are restricted to one transect across the range.</p><p>To obtain insights into the Quaternary distribution and rates of exhumation of the western Southern Alps, we use new <sup>10</sup>Be catchment-averaged erosion rates from 20 catchments along the western side of the range. Catchment-averaged erosion rates span an order of magnitude, between ~0.8 and >10 mm/yr, but we find that erosion rates of >10 mm/yr, a value often quoted in the literature as representative for the entire range, are very localized. Moreover, erosion rates decrease sharply north of the intersection with the Marlborough Fault System, suggesting substantial slip partitioning. These <sup>10</sup>Be catchment-averaged erosion rates integrate, on average, over the last ~300 yrs. Considering that the last earthquake on the Alpine Fault was in 1717, these rates are representative of inter-seismic erosion. Lake sedimentation rates and coseismic landslide modelling suggest that long-term (~10<sup>3</sup> yrs) erosion rates over a full seismic cycle could be ~40% greater than our inter-seismic erosion rates. If we assume steady state topography, such a scaling of our <sup>10</sup>Be erosion rate estimates can be used to estimate rock uplift rates in the Southern Alps. Finally, we find that erosion, and hence potentially exhumation, does not seem to be localized at a particular distance from the fault, as some tectonic and provenance studies have suggested. Instead, we find that superimposed on the primary tectonic control, there is an elevation/temperature control on erosion rates, which is probably transient and related to frost-cracking and glacial retreat.</p><p>Our results highlight the potential for <sup>10</sup>Be catchment-averaged erosion rates to provide insights into the magnitude and distribution of tectonic deformation rates, and the limitations that arise from transient erosion controls related to the seismic cycle and climate-modulated surface processes.</p><p> </p><p> </p>


Geomorphology ◽  
2016 ◽  
Vol 263 ◽  
pp. 71-86 ◽  
Author(s):  
T.R. Robinson ◽  
T.R.H. Davies ◽  
T.M. Wilson ◽  
C. Orchiston

Geology ◽  
2021 ◽  
Author(s):  
Steven Kidder ◽  
David J. Prior ◽  
James M. Scott ◽  
Hamid Soleymani ◽  
Yilun Shao

Peridotite xenoliths entrained in magmas near the Alpine fault (New Zealand) provide the first direct evidence of deformation associated with the propagation of the Australian-Pacific plate boundary through the region at ca. 25–20 Ma. Two of 11 sampled xenolith localities contain fine-grained (40–150 mm) rocks, indicating that deformation in the upper mantle was focused in highly sheared zones. To constrain the nature and conditions of deformation, we combine a flow law with a model linking recrystallized fraction to strain. Temperatures calculated from this new approach (625–970 °C) indicate that the observed deformation occurred at depths of 25–50 km. Calculated shear strains were between 1 and 100, which, given known plate offset rates (10–20 mm/yr) and an estimated interval during which deformation likely occurred (<1.8 m.y.), translate to a total shear zone width in the range 0.2–32 km. This narrow width and the position of mylonite-bearing localities amid mylonite-free sites suggest that early plate boundary deformation was distributed across at least ~60 km but localized in multiple fault strands. Such upper mantle deformation is best described by relatively rigid, plate-like domains separated by rapidly formed, narrow mylonite zones.


Author(s):  
Robert M. Langridge ◽  
Pilar Villamor ◽  
Jamie D. Howarth ◽  
William F. Ries ◽  
Kate J. Clark ◽  
...  

ABSTRACT The Alpine fault is a high slip-rate plate boundary fault that poses a significant seismic hazard to southern and central New Zealand. To date, the strongest paleoseismic evidence for the onshore southern and central sections indicates that the fault typically ruptures during very large (Mw≥7.7) to great “full-section” earthquakes. Three paleoseismic trenches excavated at the northeastern end of its central section at the Toaroha River (Staples site) provide new insights into its surface-rupture behavior. Paleoseismic ruptures in each trench have been dated using the best-ranked radiocarbon dating fractions, and stratigraphically and temporally correlated between each trench. The preferred timings of the four most recent earthquakes are 1813–1848, 1673–1792, 1250–1580, and ≥1084–1276 C.E. (95% confidence intervals using OxCal 4.4). These surface-rupture dates correlate well with reinterpreted timings of paleoearthquakes from previous trenches excavated nearby and with the timing of shaking-triggered turbidites in lakes along the central section of the Alpine fault. Results from these trenches indicate the most recent rupture event (MRE) in this area postdates the great 1717 C.E. Alpine fault rupture (the most recent full-section rupture of the southern and central sections). This MRE probably occurred within the early nineteenth century and is reconciled as either: (a) a “partial-section” rupture of the central section; (b) a northern section rupture that continued to the southwest; or (c) triggered slip from a Hope-Kelly fault rupture at the southwestern end of the Marlborough fault system (MFS). Although, no single scenario is currently favored, our results indicate that the behavior of the Alpine fault is more complex in the north, as the plate boundary transitions into the MFS. An important outcome is that sites or towns near fault intersections and section ends may experience strong ground motions more frequently due to locally shorter rupture recurrence intervals.


2014 ◽  
Vol 64 ◽  
pp. 39-52 ◽  
Author(s):  
N.C. Barth ◽  
D.K. Kulhanek ◽  
A.G. Beu ◽  
C.V. Murray-Wallace ◽  
B.W. Hayward ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document