Accurate Display of Fine Detail in Aeromagnetic Data

1981 ◽  
Vol 12 (4) ◽  
pp. 82-88 ◽  
Author(s):  
J. I. Mclntyre
Author(s):  
N.S. Allen ◽  
R.D. Allen

Various methods of video-enhanced microscopy combine TV cameras with light microscopes creating images with improved resolution, contrast and visibility of fine detail, which can be recorded rapidly and relatively inexpensively. The AVEC (Allen Video-enhanced Contrast) method avoids polarizing rectifiers, since the microscope is operated at retardations of λ/9- λ/4, where no anomaly is seen in the Airy diffraction pattern. The iris diaphram is opened fully to match the numerical aperture of the condenser to that of the objective. Under these conditions, no image can be realized either by eye or photographically. Yet the image becomes visible using the Hamamatsu C-1000-01 binary camera, if the camera control unit is equipped with variable gain control and an offset knob (which sets a clamp voltage of a D.C. restoration circuit). The theoretical basis for these improvements has been described.


Author(s):  
G. M. Greene ◽  
J. W. Sprys

The present study demonstrates that fracture surfaces appear strikingly different when observed in the transmission electron microscope by replication and in the scanning electron microscope by backscattering and secondary emission. It is important to know what form these differences take because of the limitations of each instrument. Replication is useful for study of surfaces too large for insertion into the S.E.M. and for resolution of fine detail at high magnification with the T.E.M. Scanning microscopy reduces sample preparation time and allows large sections of the actual surface to be viewed.In the present investigation various modes of the S.E.M. along with the transmission mode in the T.E.M. were used to study one area of a fatigue surface of a low carbon steel. Following transmission study of a platinum carbon replica in the T.E.M. and S.E.M. the replica was coated with a gold layer approximately 200A° in thickness to improve electron emission.


1999 ◽  
Author(s):  
R.E. Sweeney ◽  
C.A. Finn ◽  
D.D. Blankenship ◽  
R.E. Bell ◽  
John C. Behrendt

2021 ◽  
Vol 660 (1) ◽  
pp. 012131
Author(s):  
Hailong Sun ◽  
Yingxin Liu ◽  
Zheng Wei ◽  
Xu shi ◽  
Yahong Wang ◽  
...  

2021 ◽  
Author(s):  
Ming Wang ◽  
Shengjun Liang ◽  
Jiaojiao Li ◽  
Xiaoxing Lin ◽  
Yongjun Zhang

Sign in / Sign up

Export Citation Format

Share Document