Dynamic response of plant chlorophyll fluorescence to light, water and nutrient availability

2015 ◽  
Vol 42 (8) ◽  
pp. 746 ◽  
Author(s):  
M. Pilar Cendrero-Mateo ◽  
A. Elizabete Carmo-Silva ◽  
Albert Porcar-Castell ◽  
Erik P. Hamerlynck ◽  
Shirley A. Papuga ◽  
...  

Chlorophyll molecules absorb photosynthetic active radiation (PAR). The resulting excitation energy is dissipated by three competing pathways at the level of photosystem: (i) photochemistry (and, by extension, photosynthesis); (ii) regulated and constitutive thermal energy dissipation; and (iii) chlorophyll-a fluorescence (ChlF). Because the dynamics of photosynthesis modulate the regulated component of thermal energy dissipation (widely addressed as non-photochemical quenching (NPQ)), the relationship between photosynthesis, NPQ and ChlF changes with water, nutrient and light availability. In this study we characterised the relationship between photosynthesis, NPQ and ChlF when conducting light-response curves of photosynthesis in plants growing under different water, nutrient and ambient light conditions. Our goals were to test whether ChlF and photosynthesis correlate in response to water and nutrient deficiency, and determine the optimum PAR level at which the correlation is maximal. Concurrent gas exchange and ChlF light-response curves were measured for Camelina sativa (L.) Crantz and Triticum durum (L.) Desf plants grown under (i) intermediate light growth chamber conditions, and (ii) high light environment field conditions respectively. Plant stress was induced by withdrawing water in the chamber experiment, and applying different nitrogen levels in the field experiment. Our study demonstrated that ChlF was able to track the variations in photosynthetic capacity in both experiments, and that the light level at which plants were grown was optimum for detecting both water and nutrient deficiency with ChlF. The decrease in photosynthesis was found to modulate ChlF via different mechanisms depending on the treatment: through the action of NPQ in response to water stress, or through the action of changes in leaf chlorophyll concentration in response to nitrogen deficiency. This study provides support for the use of remotely sensed ChlF as a proxy to monitor plant stress dynamics from space.

1982 ◽  
Vol 70 (4) ◽  
pp. 475-480 ◽  
Author(s):  
Kenneth H. Cohn ◽  
James W. May

2013 ◽  
Vol 25 (22) ◽  
pp. 4603-4612 ◽  
Author(s):  
Georgios A. Sotiriou ◽  
Michelle A. Visbal-Onufrak ◽  
Alexandra Teleki ◽  
Eduardo J. Juan ◽  
Ann M. Hirt ◽  
...  

Planta ◽  
1993 ◽  
Vol 189 (2) ◽  
Author(s):  
E. �gren ◽  
J.R. Evans

Oecologia ◽  
2021 ◽  
Author(s):  
A. Walter-McNeill ◽  
M. A. Garcia ◽  
B. A. Logan ◽  
D. M. Bombard ◽  
J. S. Reblin ◽  
...  

2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Jochen M. Buck ◽  
Jonathan Sherman ◽  
Carolina Río Bártulos ◽  
Manuel Serif ◽  
Marc Halder ◽  
...  

Abstract Diatoms possess an impressive capacity for rapidly inducible thermal dissipation of excess absorbed energy (qE), provided by the xanthophyll diatoxanthin and Lhcx proteins. By knocking out the Lhcx1 and Lhcx2 genes individually in Phaeodactylum tricornutum strain 4 and complementing the knockout lines with different Lhcx proteins, multiple mutants with varying qE capacities are obtained, ranging from zero to high values. We demonstrate that qE is entirely dependent on the concerted action of diatoxanthin and Lhcx proteins, with Lhcx1, Lhcx2 and Lhcx3 having similar functions. Moreover, we establish a clear link between Lhcx1/2/3 mediated inducible thermal energy dissipation and a reduction in the functional absorption cross-section of photosystem II. This regulation of the functional absorption cross-section can be tuned by altered Lhcx protein expression in response to environmental conditions. Our results provide a holistic understanding of the rapidly inducible thermal energy dissipation process and its mechanistic implications in diatoms.


Sign in / Sign up

Export Citation Format

Share Document