Role of antioxidant pool in management of ozone stress through soil nitrogen amendments in two cultivars of a tropical legume

2020 ◽  
Author(s):  
Gereraj Sen Gupta ◽  
Supriya Tiwari



1975 ◽  
Vol 48 (3) ◽  
pp. 445-461 ◽  
Author(s):  
K. L. DeVries

Abstract EPR has been used to measure molecular phenomena during fracture of elastomers. To date, because of various technical limitations, the studies have been largely confined to identification of the polymer chain scission site during fracture at low temperature in rubbers, to studying ozone-stress-induced cracking of rubber, to development of a micro-macro Griffith-type failure criteria for this type of failure, and lastly to systematic investigation of the role of filler-matrix interaction in fracture of filled elastomers. It is hoped that the brief outline presented here will give the reader some insight into the uses and potential of the EPR methods for the study of fracture. As a final note, while we have concentrated almost totally on EPR fracture studies in rubbers, there has been fairly extensive EPR work on fracture in oriented plastic, fibers, and films. Even though some of this knowledge may be transferable, directly or indirectly, to elastomers, it has not been reviewed here, but important aspects of these studies have been reviewed elsewhere.







2018 ◽  
Vol 8 (1) ◽  
Author(s):  
Zhijian Xie ◽  
Chunhuo Zhou ◽  
Farooq Shah ◽  
Amjad Iqbal ◽  
GuoRong Ni




Land ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1392
Author(s):  
Hafiz Muhammad Rashad Javeed ◽  
Mazhar Ali ◽  
Imtiaz Ahmed ◽  
Xiukang Wang ◽  
Ibrahim Al-Ashkar ◽  
...  

The present investigation was conducted to understand the role of enriched biochar on soil nitrogen and carbon dynamics, leaching losses of nutrients, and growth attributes of wheat. Buffalo slurry (BS) was used to enrich the biochar for 24 h and 2% biochar (SB) or enriched biochar (SEB) was used. Enrichment of biochar with BS as SEB improved the C and N contents of biochar by 33–310% and 41–286% respectively. The application of biochar (SB) and enriched biochar (SEB) reduced the net nitrification by 81% and 94%, ammonification by 48% and 74%, and carbon dioxide by 50% and 92% respectively as compared to control. The leaching losses minerals i.e., C (by 30%), N (by 125%), P (by 50%), K (by 82%), Na (by 9%), Ca (by 24%), and Mg (by 12%) was decreased in SEB treatments compared to control. The soil enzyme activities, microbial biomass (MBC and MBN), wheat agronomy, soil bulk density and soil pore density, mineral uptake from the soil, and mineral contents in the plant body were improved in the SEB as compared to SB and control treatments. Our results revealed that the biochar enrichment process could improve the C and N storage in the soil reservoir and lower the environmental risks to soil and water.



Sign in / Sign up

Export Citation Format

Share Document