Phylogenetic analysis using rDNA reveals polyphyly of Oplophoridae (Decapoda:Caridea)

2010 ◽  
Vol 24 (2) ◽  
pp. 172 ◽  
Author(s):  
Tin-Yam Chan ◽  
Ho Chee Lei ◽  
Chi Pang Li ◽  
Ka Hou Chu

Molecular phylogenetic analysis on nine of the ten genera in the caridean family Oplophoridae Dana, 1852, as well as 14 other caridean families using mitochondrial 16S and nuclear 18S rRNA genes, does not support the monophyletic status of Oplophoridae. Two disparate groups of oplophorids are revealed, with different morphological characters and ecology. It is proposed that the family Oplophoridae is restricted to the three genera Oplophorus, Systellaspis and Janicella. These three genera tend to be distributed in shallower water than the other oplophorid genera, and can also be distinguished from them by certain morphological characters. They have a thicker integument, superficial cuticular photophores and larger eyes, and the molar process of their mandibles is greatly reduced or bears a deep channel. The family Acanthephyridae Bate, 1888 is resurrected for the other seven genera, which are generally distributed in deeper water and are characterised by red soft integument, no cuticular photophores, smaller eyes and well-developed molar process of the mandibles without a deep channel. The relationships between these two families and other caridean families could not be clearly resolved in this study.

2021 ◽  
Vol 95 ◽  
Author(s):  
B. Neov ◽  
G.P. Vasileva ◽  
G. Radoslavov ◽  
P. Hristov ◽  
D.T.J. Littlewood ◽  
...  

Abstract The aim of the study is to test a hypothesis for the phylogenetic relationships among mammalian hymenolepidid tapeworms, based on partial (D1–D3) nuclear 28S ribosomal RNA (rRNA) genes, by estimating new molecular phylogenies for the group based on partial mitochondrial cytochrome c oxidase I (COI) and nuclear 18S rRNA genes, as well as a combined analysis using all three genes. New sequences of COI and 18S rRNA genes were obtained for Coronacanthus integrus, C. magnihamatus, C. omissus, C. vassilevi, Ditestolepis diaphana, Lineolepis scutigera, Spasskylepis ovaluteri, Staphylocystis tiara, S. furcata, S. uncinata, Vaucherilepis trichophorus and Neoskrjabinolepis sp. The phylogenetic analyses confirmed the major clades identified by Haukisalmi et al. (Zoologica Scripta 39: 631–641, 2010): Ditestolepis clade, Hymenolepis clade, Rodentolepis clade and Arostrilepis clade. While the Ditestolepis clade is associated with soricids, the structure of the other three clades suggests multiple evolutionary events of host switching between shrews and rodents. Two of the present analyses (18S rRNA and COI genes) show that the basal relationships of the four mammalian clades are branching at the same polytomy with several hymenolepidids from birds (both terrestrial and aquatic). This may indicate a rapid radiation of the group, with multiple events of colonizations of mammalian hosts by avian parasites.


2005 ◽  
Vol 26 (2) ◽  
pp. 139-147 ◽  
Author(s):  
Francisca do Val ◽  
Paulo Nuin

AbstractThe systematics and phylogenetic relationships of the family Leptodactylidae are controversial as is the intrafamilial phylogeny of the leptodactylids. Here we analyze the relationships of the leptodactylid subfamily Hylodinae. This subfamily has been considered to be monophyletic and composed of three genera, Hylodes, Crossodactylus and Megaelosia. In the present study 49 characters were used, based on different studies on Leptodactylidae phylogeny. Maximum parsimony methods with unweighted and successively weighted characters were used to estimate the phylogeny of the Hylodinae. Upon analysis, the data provided further evidence of the monophyletic status of the three genera, with Megaelosia being the basal genus and the other two genera being sister taxa. The analysis with successive weighting results in a more resolved topology of the species subgroups of the genus Hylodes and separates this genus from Crossodactylus and confirms that the hylodines are monophyletic.


Phytotaxa ◽  
2014 ◽  
Vol 181 (3) ◽  
pp. 151 ◽  
Author(s):  
Yuya Inoue ◽  
Hiromi Tsubota

Based on our molecular phylogenetic analysis of haplolepideous mosses with concatenated sequences of chloroplast rps4 and rbcL genes, a new family Timmiellaceae is erected to accommodate the genera Timmiella and Luisierella, both of which have been formerly included in the family Pottiaceae.  The family Timmiellaceae is resolved as a second-branching clade together with Distichium (Distichiaceae) within the Dicranidae (haplolepideous moss) lineages and phylogenetically distinct from the Pottiaceae.  Reassessment of morphological characters suggests that a combination of the characters: 1) adaxially bulging and abaxially flat leaf surfaces, 2) sinistrorse or straight peristomes, when present, and 3) sinistrorsely arranged operculum cells is unique to Timmiellaceae and discriminates it from other haplolepideous moss families.


2014 ◽  
Vol 28 (2) ◽  
pp. 196 ◽  
Author(s):  
Thomas Wesener

Cyliosoma Pocock, 1895, the oldest available genus name for Australian giant pill-millipedes, is revised with a redescription of its type species, Sphaerotherium angulatum Butler, 1878. All 16 species of Epicyliosoma Silvestri, 1917 are transferred to Cyliosoma, together with two species, Sphaerotherium fraternum Butler, 1872 and S. marginepunctatum Karsch, 1881, which are redescribed here. A new phylogenetic analysis of the Sphaerotheriida was conducted using 100 morphological characters and including two Cyliosoma species and four recently described or redescribed species of the family Zephroniidae. Most character states are illustrated for Cyliosoma, including the first SEM images of a member of the genus. Cyliosoma is neither closely related to the South African Sphaerotherium, nor to the other Australian genus, Procyliosoma, and is here placed in a new family, Cyliosomatidae. The monotypic Australian genus Cynotelopus Jeekel, 1986 is also referred to the Cyliosomatidae. The current position of the Cyliosomatidae is in a trichotomy including the South African Sphaerotheriidae and the Malagasy–Indian Arthrosphaeridae.


1997 ◽  
Vol 67 (2) ◽  
pp. 125-141 ◽  
Author(s):  
Christopher C. Tudge

A phylogenetic analysis of selected anomuran, thalassinidean, and other decapod crustacean taxa, based on spermatozoal ultrastructural characters and spermatophore morphological characters, was performed and the following relationships of the taxa are elucidated from the trees produced. The Anomura are not a monophyletic assemblage, with the lomoid Lomis being exclusive of the remainder of the anomuran taxa, and the thalassinid Thalassina included in the anomuran clade. The synapomorphy joining the majority of the conventional anomuran taxa (Lomis excluded) is the cytoplasmic origin of the microtubular arms. When the palinurid and thalassinoid representatives are separately designated as outgroups, the Astacidea and Brachyura jointly formed a sister group to the Anomura. The superfamilies Thalassinoidea, Paguroidea, and Galatheoidea are not monophyletic groups. In all analyses the anomuran families Coenobitidae and Porcellanidae each form a monophyletic group. The paguroid family Diogenidae is paraphyletic, with the genera Clibanarius and Cancellus separate from a single clade containing the remaining diogenid genera. The families Paguridae and Parapaguridae form a monophyletic clade with the exception of Porcellanopagurus. The two representatives of the family Chirostylidae (Eumunida and Uroptychus) fail to associate with the other species in the Galatheoidea. The taxa in the family Galatheidae are not a monophyletic assemblage. The only investigated hippoid Hippa is portrayed as the sister group to the remainder of the anomuran taxa (with the exception of Lomis).


2021 ◽  
Vol 12 ◽  
Author(s):  
Mingzhen Ma ◽  
Yuqing Li ◽  
Qingxiang Yuan ◽  
Xuetong Zhao ◽  
Khaled A. S. Al-Rasheid ◽  
...  

Four suctorian ciliates, Cyclophrya magna Gönnert, 1935, Peridiscophrya florea (Kormos & Kormos, 1958) Dovgal, 2002, Heliophrya rotunda (Hentschel, 1916) Matthes, 1954 and Dendrosoma radians Ehrenberg, 1838, were collected from a freshwater lake in Ningbo, China. The morphological redescription and molecular phylogenetic analyses of these ciliates were investigated. Phylogenetic analyses inferred from SSU rDNA sequences show that all three suctorian orders, Endogenida, Evaginogenida, and Exogenida, are monophyletic and that the latter two clusters as sister clades. The newly sequenced P. florea forms sister branches with C. magna, while sequences of D. radians group with those from H. rotunda within Endogenida. The family Heliophryidae, which is comprised of only two genera, Heliophrya and Cyclophrya, was previously assigned to Evaginogenida. There is now sufficient evidence, however, that the type genus Heliophrya reproduces by endogenous budding, which corresponds to the definitive feature of Endogenida. In line with this and with the support of molecular phylogenetic analyses, we therefore transfer the family Heliophryidae with the type genus Heliophrya to Endogenida. The other genus, Cyclophrya, still remains in Evaginogenida because of its evaginative budding. Therefore, combined with morphological and phylogenetic analysis, Cyclophyidae are reactivated, and it belongs to Evaginogenida.


Diversity ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 590
Author(s):  
Hyun Woo Bang ◽  
Heejin Moon ◽  
Jinwook Back

Benthic harpacticoids were collected from Korean waters. Two species were identified as members of the genus Longipedia Claus, 1863, because they have an extremely elongated distal segment of the P2 endopod. Longipedia koreana sp. nov. is morphologically most closely related to L. nichollsi Wells, 1980 and L. scotti Sars, 1903, but it can clearly be distinguished from both species based on the following morphological characteristics: P1 coxa with strong spinules near the outer margin and the distal element being much bigger than the proximal elements, P2 coxa with a small inner seta on the anterior surface, P4 exopod first segment without an inner element, and the P5 with a rectangular exopod (more than 3.5 times as long as wide). L. ulleungensis sp. nov. is similar to L. brevispinosa Gurney, 1927, L. spinulosa Itô, 1981, and L. weberi Scott A., 1909. However, L. ulleungensis sp. nov. is characterized by the P2 coxa with a reduced inner seta, the P4 exopod second segment without an inner seta, and the anal operculum with a long median projection, a single spine, and a group of outer spines on each side. In a molecular analysis using the mitochondrial cytochrome c oxidase subunit I (COI) and 18S ribosomal RNA (18S rRNA) genes, the inter-specific variation was 22.525–23.102% and 1.325–1.382% of COI and 18S rRNA between the two new species, respectively. A key to the family Longipediidae is provided herein.


Nematology ◽  
2011 ◽  
Vol 13 (2) ◽  
pp. 155-164 ◽  
Author(s):  
Natsumi Kanzaki ◽  
Hou-Feng Li ◽  
Yen-Chiu Lan ◽  
Hajime Kosaka ◽  
Robin M. Giblin-Davis ◽  
...  

Abstract During a survey of termite-associated nematodes in southern Taiwan (Kenting National Park), two species of Poikilolaimus, Poikilolaimus cf. floridensis and an undescribed species, were isolated from termites in the family Kalotermitidae. The undescribed species is morphologically observed, described and figured herein as P. carsiops n. sp. The new species is characterised by an unusual cross-shaped stomatal opening formed by two well developed dorsal and two subventral lip sectors, each with a triangular flap and two vestigial lateral lip sectors lacking a flap, and several other morphological characters. Based upon morphology and molecular phylogenetic analysis, P. carsiops n. sp. is closest to P. floridensis; i. e., these two species share a plesiomorphic regular cuticle and short tail in both males and females, and a lack of metastegostomatal teeth or denticle. In the molecular phylogenetic analysis, P. carsiops n. sp. and P. floridensis formed a well-supported clade which was clearly separated from, but monophyletic with, a clade that includes the other Poikilolaimus species. Because both P. carsiops n. sp. and P. floridensis have been isolated only from the kalotermitid termites, the P. floridensis/P. carsiops n. sp. clade is considered to be specialised with dry wood and damp wood termites (Kalotermitidae).


Zootaxa ◽  
2018 ◽  
Vol 4482 (2) ◽  
pp. 392
Author(s):  
YA-ZHEN CHEN ◽  
WEI-AN DENG ◽  
JIA-MIN WANG ◽  
LI-LIANG LIN ◽  
SHAN-YI ZHOU

Scelimeninae is an important subfamily of Tetrigoidea; however, the phylogenetic relationships within Scelimeninae are poorly understood, and its generic classification has remained unstable. In this study, the COI, 16S rRNA and 18S rRNA genes from 24 species in 9 genera within Scelimeninae were amplified and sequenced, the base composition and inter-species genetic distance of the combined sequence of COI, 16S rRNA and 18S rRNA genes were analyzed, and the molecular phylogenetic relationships were reconstructed using Maximum Likelihood (ML) and Bayesian inference (BI) methods. The results of sequence analysis showed that the total length of the combined COI, 16S rRNA and 18S rRNA gene sequence was 3507 bp, including 2345 conservative sites, 1144 variable sites and 901 parsimony-informative sites. The average A+T content was 63.5% and 78.1% in the COI, 16S rRNA sequences, respectively, indicating A+T bias. The average genetic distance between all species was 0.134, and the average genetic distance in the inner group (Scelimeninae) was 0.126. A phylogenetic tree based on the combined sequences of the COI, 16S rRNA and 18S rRNA genes showed that the phylogenetic relationships among 9 Scelimeninae genera were as follows: Criotettix + (((Zhengitettix + Hebarditettix) + (Falconius + (Scelimena + Paragavialidium))) + ((Eucriotettix + Thoradonta) + Loxilobus)). The molecular phylogenetic results generally support the morphological taxonomy; at the genus level, Criotettix, Scelimena, Paragavialidium, Thoradonta and Eucriotettix are monophyletic groups, Scelimena and Paragavialidium form sister groups, and Thoradonta and Eucriotettix also form sister groups, but the relationship between Hebarditettix and Zhengitettix needs further study. At the species level, synonyms may exist between Thoradonta spiculoba and Thoradonta transpicula and Thoradonta nodulosa and Thoradonta obtusilobata, but more studies are required to confirm this inference. 


2001 ◽  
Vol 21 (2) ◽  
pp. 218-230 ◽  
Author(s):  
Mircea Podar ◽  
Steven H.D. Haddock ◽  
Mitchell L. Sogin ◽  
G.Richard Harbison

Sign in / Sign up

Export Citation Format

Share Document