Macroinvertebrates on coarse woody debris in the littoral zone of a boreal lake

2009 ◽  
Vol 60 (9) ◽  
pp. 960 ◽  
Author(s):  
Patricia N. Glaz ◽  
Christian Nozais ◽  
Dominique Arseneault

Logging activity was a regular practice in the boreal forest of Quebec during the 19th century and may have had an impact on the temporal dynamics of aquatic coarse woody debris (CWD) and associated organisms. The dynamics of white cedar (Thuja occidentalis) CWD inputs from the riparian environment in a boreal lake in Eastern Quebec, Canada, over the past 350 years were reconstructed and differences in the macroinvertebate communities according to CWD age, season of sampling (spring, summer and autumn), depth and site were investigated. It was hypothesised that CWD macroinvertebrate community structure would change with CWD age, season and depth, but not among sites. No significant correlation was found between CWD age and macroinvertebrate densities and taxa number. The macroinvertebrate community was highly variable in space and time. Season was the main factor influencing taxa composition and the relative densities of individuals. The mean density was more than twofold greater in autumn than in spring and summer (1046, 1049 and 2335 individuals m–2 in spring, summer and autumn respectively). Density and taxa number decreased with depth, but site did not appear to influence the community. As CWD inputs increased during the log-driving period, impacts on macroinvertebrate communities were likely to be important and should be documented across the boreal zone.

1994 ◽  
Vol 24 (9) ◽  
pp. 1933-1938 ◽  
Author(s):  
Michael K. Young

Following fire, changes in streamflow and bank stability in burned watersheds can mobilize coarse woody debris. In 1990 and 1991, I measured characteristics of coarse woody debris and standing riparian trees and snags in Jones Creek, a watershed burned in 1988, and in Crow Creek, an unburned watershed. The mean diameter of riparian trees along Jones Creek was less than that of trees along Crow Creek, but the coarse woody debris in Jones Creek was greater in mean diameter. Tagged debris in Jones Creek was three times as likely to move, and moved over four times as far as such debris in Crow Creek. In Jones Creek, the probability of movement was higher for tagged pieces that were in contact with the stream surface. Larger pieces tended to be more stable in both streams. It appears that increased flows and decreased bank stability following fire increased the transport of coarse woody debris in the burned watershed. Overall, debris transport in Rocky Mountain streams may be of greater significance than previously recognized.


Our Nature ◽  
1970 ◽  
Vol 7 (1) ◽  
pp. 32-38 ◽  
Author(s):  
P. Das ◽  
A. Chettri ◽  
H. Kayang

Slash and burn shifting cultivation or jhum is the predominant form of land use pattern in the hilly terain of northeast India. Impact of jhum practice on Auriscalpium vulgare growing on the female Khasi pine cone was studied. The period of mature cone falling proceeds after the slash and burn activity, hence only 1:3 escapes the burning practice. During the assessment, burned and unburned cones were assigned to coarse woody debris (CWD) and classified into three girth classes: small (≤10 cm), intermediate (>10 to ≤13 cm) and large (>13 cm). The mean number of basidiocarps in burned cones was significantly higher than unburned ones (p<0.00001). A significant linear relationship between girth size of burned cones and number of basidiocarps was observed (r = 0.736; p<0.01). The study reveals that maximum number of fungi thrives on the burned cones (anthropogenically disturbed) of pine and girth size affects the number of basidiocarp. Key words: burned and unburned pine cones; coarse woody debris (CWD); Khasi pine; slash and burnDOI: 10.3126/on.v7i1.2551Our Nature (2009) 7:32-38


1999 ◽  
Vol 56 (3) ◽  
pp. 496-505 ◽  
Author(s):  
Richard P Guyette ◽  
William G Cole

Littoral coarse woody debris (CWD) is a persistent class of aquatic habitat that accumulates over many centuries and provides habitat for diverse floral and faunal communities. We used dendrochronological methods to analyze residence times and age-related characteristics of eastern white pine (Pinus strobus) CWD in the littoral zone of Swan Lake in Algonquin Provincial Park, Ontario. The mean calendar date of all the annual rings in CWD samples was 1551. Annual rings dated from calendar year 1893 to 982. The mean time from carbon assimilation in a live tree to carbon loss from littoral woody debris was 443 years. Outside ring dates of the woody debris were significantly correlated with the bole's maximum and minimum diameter ratio, mass, specific gravity, length, and submergence. Negative exponential functions described the temporal structure of the CWD mass and abundance. Accelerated inputs of woody debris resulted from late nineteenth century logging and a disturbance circa 1500. No mature eastern white pine have fallen into the lake over the last 100 years.


2008 ◽  
Vol 38 (3) ◽  
pp. 415-428 ◽  
Author(s):  
Jan Holeksa ◽  
Tomasz Zielonka ◽  
Magdalena Żywiec

Coarse woody debris (CWD) is an important structural element in forests. Its role depends on the species, size, position, and decay rate. This paper reports an attempt to determine the total residence time of CWD across all decay classes and also within successive decay classes. We simulated the process of CWD decomposition for stem size and position (snags versus logs), using matrices of the transition of CWD between decay classes. The study was based on a sample of 2785 Norway spruce snags and logs measured twice over a 10  year period in a Carpathian subalpine forest. The revealed pattern of decomposition depended highly on CWD size. When log numbers were considered, the mean total residence time increased from 71 years for small logs (diameter < 23 cm) to 90 years for medium-sized logs (23–35 cm), and to 113 years for large logs (>35 cm). In terms of volume, the mean total residence times of logs were 47, 49, and 63 years for the three diameter categories. Still shorter were the mean total residence times for log mass: 34, 41, and 41 years for the three diameter categories. The pattern of decomposition depended highly on the CWD attributes taken into consideration. The differences in decay rate between log diameter categories are considerable when the number of logs is taken into account, but they practically vanish when log mass is considered.


Biotropica ◽  
2021 ◽  
Author(s):  
Ekaterina Shorohova ◽  
Ekaterina Kapitsa ◽  
Andrey Kuznetsov ◽  
Svetlana Kuznetsova ◽  
Valentin Lopes de Gerenuy ◽  
...  

2021 ◽  
pp. e01637
Author(s):  
Francesco Parisi ◽  
Michele Innangi ◽  
Roberto Tognetti ◽  
Fabio Lombardi ◽  
Gherardo Chirici ◽  
...  

Ecosystems ◽  
2019 ◽  
Vol 23 (3) ◽  
pp. 541-554
Author(s):  
Adam Gorgolewski ◽  
Philip Rudz ◽  
Trevor Jones ◽  
Nathan Basiliko ◽  
John Caspersen

1993 ◽  
Vol 23 (6) ◽  
pp. 1052-1059 ◽  
Author(s):  
Rodney J. Keenan ◽  
Cindy E. Prescott ◽  
J.P. Hamish Kimmins

Biomass and C, N, P, and K contents of woody debris and the forest floor were surveyed in adjacent stands of old-growth western red cedar (Thujaplicata Donn)–western hemlock (Tsugaheterophylla (Raf.) Sarg.) (CH type), and 85-year-old, windstorm-derived, second-growth western hemlock–amabilis fir (Abiesamabilis (Dougl.) Forbes) (HA type) at three sites on northern Vancouver Island. Carbon concentrations were relatively constant across all detrital categories (mean = 556.8 mg/g); concentrations of N and P generally increased, and K generally decreased, with increasing degree of decomposition. The mean mass of woody debris was 363 Mg/ha in the CH and 226 Mg/ha in the HA type. The mean forest floor mass was 280 Mg/ha in the CH and 211 Mg/ha in the HA stands. Approximately 60% of the forest floor mass in each forest type was decaying wood. Dead woody material above and within the forest floor represented a significant store of biomass and nutrients in both forest types, containing 82% of the aboveground detrital biomass, 51–59% of the N, and 58–61% of the detrital P. Forest floors in the CH and HA types contained similar total quantities of N, suggesting that the lower N availability in CH forests is not caused by greater immobilization in detritus. The large accumulation of forest floor and woody debris in this region is attributed to slow decomposition in the cool, wet climate, high rates of detrital input following windstorms, and the large size and decay resistance of western red cedar boles.


Sign in / Sign up

Export Citation Format

Share Document