stem size
Recently Published Documents


TOTAL DOCUMENTS

143
(FIVE YEARS 52)

H-INDEX

19
(FIVE YEARS 3)

Author(s):  
Matthias Luger ◽  
Christian Stadler ◽  
Rainer Hochgatterer ◽  
Jakob Allerstorfer ◽  
Tobias Gotterbarm ◽  
...  

Abstract Purpose Short stems are increasingly used in total hip arthroplasty (THA) because of advantages in bone and soft tissue preservation and reconstruction of hip geometry. Digital templating is essential in determining the correct offset option and stem size in THA. However, the preoperative template sizes might be intraoperatively overruled. Patients and methods We evaluated the effect of intraoperative overruling of the preoperatively templated offset option of a short curved stem on hip offset, leg length, implant positioning, and femoral canal fill index. The overruling was performed in case of intraoperative instability, telescoping, or both. A series of 1052 consecutive THAs with a cementless short curved stem and press-fit cup was retrospectively screened. One hundred patients with unilateral THA and a contralateral native and morphologically healthy hip as a reference met the inclusion criteria. Measurements were carried out on preoperative and 3 months anterior–posterior postoperative radiographs. Patients were divided according to the overruling by offset option or stem size. Results Hip offset was increased in all groups, but only with significant increase if an offset option + 1 was used intraoperatively (p = 0.025). LLD was restored without significance in all groups (p = 0.323; p = 0.157). Conclusion Intraoperative overruling of the preoperative digital template in cementless short stem total hip arthroplasty results in an increase of hip offset compared to a contralateral healthy hip. However, the increase is marginal and clearly under 5 mm compared to the contralateral healthy hip.


2021 ◽  
pp. 21-35
Author(s):  
Vilela João de Sousa ◽  
Cristiano Pires ◽  
Coert J. Geldenhuys ◽  
Albano Figueiredo

The general perception is that forest resources exploitation can cause the degradation and loss of resources and biodiversity, promoted by landscape fragmentation and pressure over habitats. But such assumption might not be adjusted to situations where long term exploitation by traditional communities is based on management strategies adapted to recovery, adjusting pressure to kept resources available. In this work, we assess the recovery of the Mopane woodlands considering different land use practices and stand development stages on areas explored by local communities. In detail, we want to explore: i) changes on stem size across plant comunities dominated by Mopane (Kirk ex Benth ex J. Leonard); ii) relationships between the variation in stem size across communities and the associated land use practices and vegetation stand development stage. To answer those questions, an inventory was carried out to collect data from 50 temporary circular plots of different sizes spatially nested, covering four stand development stages. Each nested circular plot was composed of a large plot (0.02 ha), an intermediate plot (0.04 ha), and an inner plot (0.01 ha) for counting stems of different DBH. Data was analysed using Excel, Two-Way Indicator Species Analysis (TWINSPAN) and CANOCO, and several parametric and non-parametric tests. TWINSPAN analysis, using stem counts, grouped the 1746 stems from 29 species (with Mopane as one species) into 5 communities and 10 sub-communities, based on indicator species and eigenvalues (level of stability). This study was carried out in the Limpopo National Park (LNP), in Mozambique, a conservation area established in 2001 and part of the Great Limpopo Transfrontier Park (GLTP) since 2002. Acording to the results, population structure (size class distribution of trees) of Mopane communities showed variation related to stand development stage, as expected. The initial stages show good regeneration, indicating that recovery is not hampered by the exploitation regime in use, a critical aspect once ecosystem dynamics of Mopane woodland has a deep influence on the way that local communities manage harvesting of Mopane products for different uses, and traditional uses do also have influence on recovery dynamics. So, management of such resource is critical to ensure sustainable resource use and guarantee provision for future generations. For that, a zonation of Mopane woodlands within the Park, considering different land uses, might enhance a quick system recovery on specific areas and contribute to woodland productivity, good quality products and reduce used areas, promoting habitat conservation.


2021 ◽  
Author(s):  
Ninni Saarinen ◽  
Ville Kankare ◽  
Saija Huuskonen ◽  
Jari Hynynen ◽  
Simone Bianchi ◽  
...  

Trees adapt to their growing conditions by regulating the sizes of their parts and their relationships. For example, removal or death of adjacent trees increases the growing space and the amount of light received by the remaining trees enabling their crowns to expand. Knowledge about the effects of silvicultural practices on crown size and shape as well as about the quality of branches affecting the shape of a crown is, however, still limited. Thus, the aim was to study the crown structure of individual Scots pine trees in forest stands with varying stem densities due to past forest management practices. Furthermore, we wanted to understand how crown and stem attributes as well as tree growth affects stem area at the height of maximum crown diameter (SAHMC), which could be used as a proxy for tree growth potential. We used terrestrial laser scanning (TLS) to generate attributes characterizing crown size and shape. The results showed that increasing stem density decreased Scots pine crown size. TLS provided more detailed attributes for crown characterization compared to traditional field measurements. Furthermore, decreasing stem density increased SAHMC and strong relationships (Spearman correlations >0.5) were found between SAHMC and crown and stem size as well as stem growth. Thus, this study provided quantitative and more comprehensive characterization of Scots pine crowns and their growth potential.


2021 ◽  
Author(s):  
◽  
Matthew Biddick

<p>For reasons not fully understood, animals often evolve predictably on islands. For example, radiations of large, flightless birds are a common element of many island biotas. However, our understanding of how plants evolve on islands is comparatively poor. Further, an investigation into the evolution of island plants could help resolve unanswered questions about island animals. This thesis investigates insular size changes in a range of plant functional traits.   First (Chapter 2), I explored size changes in 9 species of vines that have colonized islands from the New Zealand and Australian mainland. I asked whether leaf–stem allometry prohibits leaves and stems from evolving independently from one another. Island populations consistently produced larger leaves than did mainland populations. Moreover, changes in leaf size were not associated with concomitant changes in stem size, suggesting that trait allometry does not govern trait evolution on islands.   Next (Chapter 3), I asked whether plants obey the infamous island rule, a putative trend in island evolution wherein small animals become large on islands and large animals become small. I demonstrate that plant stature and leaf area obey the island rule, and seed size does not. My findings illustrate that the island rule is more pervasive than previously considered, but that support for its predictions vary among plant functional traits.   Third (Chapter 4), I demonstrate that the island rule results from evolutionary drift along bounded trait domains. The island rule has long been hypothesized to result from a suite of selective pressures. Applying my model to island plants, I show that evolutionary drift is the most parsimonious explanation for the island rule pattern.   Finally (Chapter 5), to explore insular patterns in leaf size evolution, I conducted a large-scale, macroevolutionary analysis of leaf size on 98 of New Zealand’s offshore islands. Leaf gigantism was emblematic of island populations, and was most prominent in taxa with variable leaf morphologies on the mainland. Further, leaf gigantism was greatest in populations inhabiting old, distant islands, suggesting that time since divergence is a direct predictor of morphological differentiation between mainland and island populations.  Overall, this thesis reveals novel patterns, and helps disentangle the distinct roles of natural selection and drift, in the evolution of plant form and function on islands. Finally, this thesis illustrates how investigating the changes in plant traits can help identify the evolutionary mechanisms operating on islands.</p>


2021 ◽  
Author(s):  
◽  
Matthew Biddick

<p>For reasons not fully understood, animals often evolve predictably on islands. For example, radiations of large, flightless birds are a common element of many island biotas. However, our understanding of how plants evolve on islands is comparatively poor. Further, an investigation into the evolution of island plants could help resolve unanswered questions about island animals. This thesis investigates insular size changes in a range of plant functional traits.   First (Chapter 2), I explored size changes in 9 species of vines that have colonized islands from the New Zealand and Australian mainland. I asked whether leaf–stem allometry prohibits leaves and stems from evolving independently from one another. Island populations consistently produced larger leaves than did mainland populations. Moreover, changes in leaf size were not associated with concomitant changes in stem size, suggesting that trait allometry does not govern trait evolution on islands.   Next (Chapter 3), I asked whether plants obey the infamous island rule, a putative trend in island evolution wherein small animals become large on islands and large animals become small. I demonstrate that plant stature and leaf area obey the island rule, and seed size does not. My findings illustrate that the island rule is more pervasive than previously considered, but that support for its predictions vary among plant functional traits.   Third (Chapter 4), I demonstrate that the island rule results from evolutionary drift along bounded trait domains. The island rule has long been hypothesized to result from a suite of selective pressures. Applying my model to island plants, I show that evolutionary drift is the most parsimonious explanation for the island rule pattern.   Finally (Chapter 5), to explore insular patterns in leaf size evolution, I conducted a large-scale, macroevolutionary analysis of leaf size on 98 of New Zealand’s offshore islands. Leaf gigantism was emblematic of island populations, and was most prominent in taxa with variable leaf morphologies on the mainland. Further, leaf gigantism was greatest in populations inhabiting old, distant islands, suggesting that time since divergence is a direct predictor of morphological differentiation between mainland and island populations.  Overall, this thesis reveals novel patterns, and helps disentangle the distinct roles of natural selection and drift, in the evolution of plant form and function on islands. Finally, this thesis illustrates how investigating the changes in plant traits can help identify the evolutionary mechanisms operating on islands.</p>


2021 ◽  
Vol 51 (4) ◽  
pp. 334-346
Author(s):  
Tatiani Yuriko Pinheiro KIKUCHI ◽  
Cátia Henriques CALLADO

ABSTRACT Palms may be an important source of renewable raw material to replace wood, however, the uses of the stems of native species of the Brazil are known only at the local or regional level. We carried out a literature review on the traditional knowledge of the uses of the stems of palm species native to the Amazon biome in Brazil, and related the types of uses with morphological characteristics of the stems. The review resulted in information on 45 species with solitary or cespitose stems, and six stem-size types: tall (15 species), medium-short (3), medium (5), small (17), acaulescent (1) and climbing (4). We found 80 indications of stem use in seven categories and 14 subcategories. A similarity analysis showed that, in general, tall, medium-short, medium, small (≥ 10 cm in diameter) and climbing stem types, solitary or cespitous, are used for construction, furniture, handicrafts, utensils, tools and musical instruments. Only small stems (< 10 cm diameter) are used to manufacture weapons for hunting and fishing, and climbing stems are used in the manufacture of ropes. Stems of Socratea exorrhiza, Euterpe oleracea and Desmoncus polyacanthos are the most frequently used to meet subsistence needs in traditional communities in the Brazilian Amazon. Our findings indicate that there is a potential for use of several native palm stems as sources for alternative materials in the manufacture industry and as sustainable income sources for Amazonian communities.


2021 ◽  
Vol 4 ◽  
Author(s):  
Roman Zweifel ◽  
Sophia Etzold ◽  
David Basler ◽  
Reinhard Bischoff ◽  
Sabine Braun ◽  
...  

The TreeNet research and monitoring network has been continuously collecting data from point dendrometers and air and soil microclimate using an automated system since 2011. The goal of TreeNet is to generate high temporal resolution datasets of tree growth and tree water dynamics for research and to provide near real-time indicators of forest growth performance and drought stress to a wide audience. This paper explains the key working steps from the installation of sensors in the field to data acquisition, data transmission, data processing, and online visualization. Moreover, we discuss the underlying premises to convert dynamic stem size changes into relevant biological information. Every 10 min, the stem radii of about 420 trees from 13 species at 61 sites in Switzerland are measured electronically with micrometer precision, in parallel with the environmental conditions above and below ground. The data are automatically transmitted, processed and stored on a central server. Automated data processing (R-based functions) includes screening of outliers, interpolation of data gaps, and extraction of radial stem growth and water deficit for each tree. These long-term data are used for scientific investigations as well as to calculate and display daily indicators of growth trends and drought levels in Switzerland based on historical and current data. The current collection of over 100 million data points forms the basis for identifying dynamics of tree-, site- and species-specific processes along environmental gradients. TreeNet is one of the few forest networks capable of tracking the diurnal and seasonal cycles of tree physiology in near real-time, covering a wide range of temperate forest species and their respective environmental conditions.


2021 ◽  
Vol 49 (11) ◽  
pp. 030006052110588
Author(s):  
Xuzhuang Ding ◽  
Bingshi Zhang ◽  
Wenao Li ◽  
Jia Huo ◽  
Sikai Liu ◽  
...  

Objective We performed a retrospective study to compare the accuracy of preoperative planning using three-dimensional AI-HIP software and traditional two-dimensional manual templating to predict the size and position of prostheses. The purpose of this study was to evaluate the accuracy of AI-HIP in preoperative planning for primary total hip arthroplasty. Methods In total, 316 hips treated from April 2019 to June 2020 were retrospectively reviewed. A typical preoperative planning process for patients was implemented to compare the accuracy of the two preoperative planning methods with respect to prosthetic size and position. Intraclass correlation coefficients (ICCs) were used to evaluate the homogeneity between the actual prosthetic size and position and the preoperative planning method. Results When AI-HIP software and manual templating were used for preoperative planning, the stem agreement was 87.7% and 58.9%, respectively, and the cup agreement was 94.0% and 65.2%, respectively. The results showed that when AI-HIP software was used, an extremely high level of consistency (ICC > 0.95) was achieved for the femoral stem size, cup size, and femoral osteotomy level (ICC = 0.972, 0.962, and 0.961, respectively). Conclusion AI-HIP software showed excellent reliability for predicting the component size and implant position in primary total hip arthroplasty.


2021 ◽  
Author(s):  
Wenao Li ◽  
Xiaowei Yao ◽  
Bingshi Zhang ◽  
Xuzhuang Ding ◽  
Jia Huo ◽  
...  

Abstract BackgroundPreoperative planning with computed tomography (CT)-based three-dimensional templating has been achieved more precise placement of hip components. This study investigated the value of the software for preoperative planning (artificial intelligence hip system, AIHIP) in primary total hip arthroplasty (THA) for surgeons with different experience levels.MethodsWe performed a retrospective study of 240 hips in 240 patients who underwent cementless primary THA. The patients were divided into four groups: A1) senior surgeon without AIHIP, A2) senior surgeon with AIHIP, B1) junior surgeon without AIHIP, and B2) junior surgeon with AIHIP. All preoperative planning evaluations were completed using the AIHIP software. We analysed the accuracy of stem size prediction and cup size prediction, the absolute value of postoperative discrepancy in leg length, discrepancy of neck-shaft angle and femoral offset between the healthy side and the affected side from the anteroposterior radiographic view of the hip, intraoperative and postoperative complications, operative times, the reduction in the haemoglobin (Hb) level during the first 24 hours and the number of intraoperative radiations.ResultsThe sizes of 95% were accurately estimated to be within one stem size, and 97% of the cup size estimates were accurate to within one cup size in group A2. A total of 87% were accurately estimated to be within one stem size, and 85% were accurate to within one cup size in group B2. There was a significant difference in radiological indicators (P<0.050), postoperative complications (overall P=0.035), operation duration (P<0.001), decrease in Hb per 24 hours (P=0.046) and intraoperative radiation frequency (P<0.050) among the patients in group B. There was also a significant difference in postoperative complications (overall P=0.01) between groups A1 and B1.ConclusionOur results suggest that the AIHIP is a favourable tool for young surgeons, and the accuracy is good.


2021 ◽  
Vol 912 (1) ◽  
pp. 012008
Author(s):  
N Sembiring ◽  
H L Napitupulu ◽  
M T Sembiring ◽  
A Ishak ◽  
H A Gunawan

Abstract Eucalyptus is one of the major species used for pulp and paper industry. As industries develop, the need for Eucalyptus supply increases. However, there are challenges plantation companies must specifically determining eucalyptus market price potential risks in eucalyptus plantation and how eucalyptus plantation impacts the surrounding environment.. Stakeholders on eucalyptus supply chain have risks which have to be mitigated. The eucalyptus seedling and developer and the supplier hold crucial role in providing good quality eucalyptus raw material for pulp and paper production plants. This research is conducted to explore on ways to mitigate each stakeholders risk, challenges plantation companies face in fulfilling eucalyptus raw material for pulp and paper production plants. There are four stakeholders in eucalyptus supply chain: eucalyptus seedling developer and seller, supplier, distribution centre and pulp and paper production plants. Some of the major risk stakeholders are facing in eucalyptus supply chain are: early cut of eucalyptus trees, farmers’ lack of understanding on growing eucalyptus properly, small stem size, fluctuating eucalyptus wood price and low stock quantity. Some of the minor risk stakeholders are facing: earthquake, over fertilization, overwatering, cold climate, and plant setting. There are four methods used to determine eucalyptus pricing: cost-based pricing, customer-based pricing, competition-based pricing, and statutory pricing. Eucalyptus consume high amount of water which can cause dry areas around eucalyptus plantation area and low groundwater reservoir.


Sign in / Sign up

Export Citation Format

Share Document