Role of LHCII-containing macrodomains in the structure, function and dynamics of grana

2000 ◽  
Vol 27 (7) ◽  
pp. 723 ◽  
Author(s):  
G. Garab ◽  
L. Mustárdy

In higher plants and green algae two types of thylakoids are distinguished, granum (stacked) and stroma (unstacked) thylakoids. They form a three-dimensional (3D) network with large lateral heterogeneity: photosystem II (PSII) and the associated main chlorophyll a/b light-harvesting complex (LHCII) are found predominantly in the stacked region, while PSI and LHCI are located mainly in the unstacked region of the membrane. This picture emerged from the discovery of the physical separation of the two photosystems (Boardman and Anderson 1964). Granal chloroplasts possess significant flexibility, which is essential for optimizing the photosynthetic machinery under various environmental conditions. However, our understanding concerning the assembly, structural dynamics and regulatory functions of grana is far from being complete. In this paper we overview the significance of the three-dimensional structure of grana in the absorption properties, ionic equilibrations, and in the diffusion of membrane components between the stacked and unstacked regions. Further, we discuss the role of chiral macrodomains in the grana. Lateral heterogeneity of thylakoid membranes is proposed to be a consequence of the formation of macrodomains constituted of LHCII and PSII; their long range order permits long distance migration of excitation energy, which explains the energetic connectivity of PSII particles. The ability of macrodomains to undergo light-induced reversible structural changes lends structural flexibility to the granum. In purified LHCII, which has also been shown to form stacked lamellar aggregates with long range chiral order, excitation energy migrates for large distances; these macroaggregates are also capable of undergoing light-induced reversible structural changes and fluorescence quenching. Hence, some basic properties of grana appear to originate from its main constituent, the LHCII.

2000 ◽  
Vol 27 (3) ◽  
pp. 279 ◽  
Author(s):  
G. Garab ◽  
L. Mustárdy

In higher plants and green algae two types of thylakoids are distinguished, granum (stacked) and stroma (unstacked) thylakoids. They form a three-dimensional (3D) network with large lateral heterogeneity: photosystem II (PSII) and the associated main chlorophyll a/b light-harvesting complex (LHCII) are found predominantly in the stacked region, while PSI and LHCI are located mainly in the unstacked region of the membrane. This picture emerged from the discovery of the physical separation of the two photosystems (Boardman and Anderson 1964). Granal chloroplasts possess significant flexibility, which is essential for optimizing the photosynthetic machinery under various environmental conditions. However, our understanding concerning the assembly, structural dynamics and regulatory functions of grana is far from being complete. In this paper we overview the significance of the three-dimensional structure of grana in the absorption properties, ionic equilibrations, and in the diffusion of membrane components between the stacked and unstacked regions. Further, we discuss the role of chiral macrodomains in the grana. Lateral heterogeneity of thylakoid membranes is proposed to be a consequence of the formation of macrodomains constituted of LHCII and PSII; their long range order permits long distance migration of excitation energy, which explains the energetic connectivity of PSII particles. The ability of macrodomains to undergo light-induced reversible structural changes lends structural flexibility to the granum. In purified LHCII, which has also been shown to form stacked lamellar aggregates with long range chiral order, excitation energy migrates for large distances; these macroaggregates are also capable of undergoing light-induced reversible structural changes and fluorescence quenching. Hence, some basic properties of grana appear to originate from its main constituent, the LHCII.


1999 ◽  
Vol 26 (7) ◽  
pp. 649 ◽  
Author(s):  
G. Garab ◽  
L. Mustárdy

In higher plants and green algae two types of thylakoids are distinguished, granum (stacked) and stroma (unstacked) thylakoids. They form a three-dimensional (3D) network with large lateral heterogeneity: photosystem II (PSII) and the associated main chlorophyll a/b light-harvesting complex (LHCII) are found predominantly in the stacked region, while PSI and LHCI are located mainly in the unstacked region of the membrane. This picture emerged from the discovery of the physical separation of the two photosystems (Boardman and Anderson 1964). Granal chloroplasts possess significant flexibility, which is essential for optimizing the photosynthetic machinery under various environmental conditions. However, our understanding concerning the assembly, structural dynamics and regulatory functions of grana is far from being complete. In this paper we overview the significance of the three-dimensional structure of grana in the absorption properties, ionic equilibrations, and in the diffusion of membrane components between the stacked and unstacked regions. Further, we discuss the role of chiral macrodomains in the grana. Lateral heterogeneity of thylakoid membranes is proposed to be a consequence of the formation of macrodomains constituted of LHCII and PSII; their long range order permits long distance migration of excitation energy, which explains the energetic connectivity of PSII particles. The ability of macrodomains to undergo light-induced reversible structural changes lends structural flexibility to the granum. In purified LHCII, which has also been shown to form stacked lamellar aggregates with long range chiral order, excitation energy migrates for large distances; these macroaggregates are also capable of undergoing light-induced reversible structural changes and fluorescence quenching. Hence, some basic properties of grana appear to originate from its main constituent, the LHCII.


1981 ◽  
Vol 195 (1) ◽  
pp. 31-40 ◽  
Author(s):  
F E Cohen ◽  
J Novotný ◽  
M J E Sternberg ◽  
D G Campbell ◽  
A F Williams

The Thy-1 membrane glycoprotein from rat brain is shown to have structural and sequence homologies with immunoglobulin (Ig) domains on the basis of the following evidence. 1. The two disulphide bonds of Thy-1 are both consistent with the Ig-fold. 2. The molecule contains extensive beta-structure as shown by the c.d. spectrum. 3. Secondary structure prediction locates beta-strands along the sequence in a manner consistent with the Ig-fold. 4. On the basis of rules derived from known beta-sheet structures, a three-dimensional structure with the Ig-fold is predicted as favourable for Thy-1. 5. Sequences in the proposed beta-strands of Thy-1 and known beta-strands of Ig domains show significant sequence homology. This homology is statistically more significant than for the comparison of proposed beta-strand sequences of beta 2-microglobulin with Ig domains. An hypothesis is presented for the possible functional significance of an evolutionary relationship between Thy-1 and Ig. It is suggested that both Thy-1 and Ig evolved from primitive molecules, with an Ig fold, which mediated cell--cell interactions. The present-day role of Thy-1 may be similar to that of the primitive domain.


Author(s):  
YU ZHANG ◽  
YU PING GUAN ◽  
RUI XIN HUANG

AbstractOcean striations are composed of alternating quasi-zonal band-like flows; this kind of organized structure of currents be found in all world’s oceans and seas. Previous studies have mainly been focused on the mechanisms of their generation and propagation. This study uses the spatial high-pass filtering to obtain the three-dimensional structure of ocean striations in the North Pacific in both the z-coordinate and σ-coordinate based on 10-yr averaged SODA3 data. First, we identify an ideal-fluid potential density domain where the striations are undisturbed by the surface forcing and boundary effects. Second, using the isopycnal layer analysis, we show that on isopycnal surfaces the orientations of striations nearly follow the potential vorticity (PV) contours, while in the meridional-vertical plane the central positions of striations are generally aligned with the latitude of zero gradient of the relative PV. Our analysis provides a simple dynamical interpretation and better understanding for the role of ocean striations.


1998 ◽  
Vol 333 (3) ◽  
pp. 811-816 ◽  
Author(s):  
Antonio PÁRRAGA ◽  
Isabel GARCÍA-SÁEZ ◽  
Sinead B. WALSH ◽  
Timothy J. MANTLE ◽  
Miquel COLL

The structure of mouse liver glutathione S-transferase P1-1 complexed with its substrate glutathione (GSH) has been determined by X-ray diffraction analysis. No conformational changes in the glutathione moiety or in the protein, other than small adjustments of some side chains, are observed when compared with glutathione adduct complexes. Our structure confirms that the role of Tyr-7 is to stabilize the thiolate by hydrogen bonding and to position it in the right orientation. A comparison of the enzyme–GSH structure reported here with previously described structures reveals rearrangements in a well-defined network of water molecules in the active site. One of these water molecules (W0), identified in the unliganded enzyme (carboxymethylated at Cys-47), is displaced by the binding of GSH, and a further water molecule (W4) is displaced following the binding of the electrophilic substrate and the formation of the glutathione conjugate. The possibility that one of these water molecules participates in the proton abstraction from the glutathione thiol is discussed.


2014 ◽  
Vol 10 (4) ◽  
Author(s):  
Ruben Acuña ◽  
Zoé Lacroix ◽  
Nikolaos Papandreou ◽  
Jacques Chomilier

AbstractThe transition state ensemble during the folding process of globular proteins occurs when a sufficient number of intrachain contacts are formed, mainly, but not exclusively, due to hydrophobic interactions. These contacts are related to the folding nucleus, and they contribute to the stability of the native structure, although they may disappear after the energetic barrier of transition states has been passed. A number of structure and sequence analyses, as well as protein engineering studies, have shown that the signature of the folding nucleus is surprisingly present in the native three-dimensional structure, in the form of closed loops, and also in the early folding events. These findings support the idea that the residues of the folding nucleus become buried in the very first folding events, therefore helping the formation of closed loops that act as anchor structures, speed up the process, and overcome the Levinthal paradox. We present here a review of an algorithm intended to simulate in a discrete space the early steps of the folding process. It is based on a Monte Carlo simulation where perturbations, or moves, are randomly applied to residues within a sequence. In contrast with many technically similar approaches, this model does not intend to fold the protein but to calculate the number of non-covalent neighbors of each residue, during the early steps of the folding process. Amino acids along the sequence are categorized as most interacting residues (MIRs) or least interacting residues. The MIR method can be applied under a variety of circumstances. In the cases tested thus far, MIR has successfully identified the exact residue whose mutation causes a switch in conformation. This follows with the idea that MIR identifies residues that are important in the folding process. Most MIR positions correspond to hydrophobic residues; correspondingly, MIRs have zero or very low accessible surface area. Alongside the review of the MIR method, we present a new postprocessing method called smoothed MIR (SMIR), which refines the original MIR method by exploiting the knowledge of residue hydrophobicity. We review known results and present new ones, focusing on the ability of MIR to predict structural changes, secondary structure, and the improved precision with the SMIR method.


2018 ◽  
Vol 475 (7) ◽  
pp. 1225-1233 ◽  
Author(s):  
Matthew P. Johnson

The photosynthetic chloroplast thylakoid membrane of higher plants is a complex three-dimensional structure that is morphologically dynamic on a timescale of just a few minutes. The membrane dynamics are driven by the phosphorylation of light-harvesting complex II (LHCII) by the STN7 kinase, which controls the size of the stacked grana region relative to the unstacked stromal lamellae region. Here, I hypothesise that the functional significance of these membrane dynamics is in controlling the partition of electrons between photosynthetic linear and cyclic electron transfer (LET and CET), which determines the ratio of NADPH/ATP produced. The STN7 kinase responds to the metabolic state of the chloroplast by sensing the stromal redox state. A high NADPH/ATP ratio leads to reduction of thioredoxin f (TRXf), which reduces a CxxxC motif in the stromal domain of STN7 leading to its inactivation, whereas a low NADPH/ATP ratio leads to oxidation of TRXf and STN7 activation. Phosphorylation of LHCII leads to smaller grana, which favour LET by speeding up diffusion of electron carriers plastoquinone (PQ) and plastocyanin (PC) between the domains. In contrast, dephosphorylation of LHCII leads to larger grana that slow the diffusion of PQ and PC, leaving the PQ pool in the stroma more oxidised, thus enhancing the efficiency of CET. The feedback regulation of electron transfer by the downstream metabolism is crucial to plant fitness, since perturbations in the NADPH/ATP ratio can rapidly lead to the inhibition of photosynthesis and photo-oxidative stress.


CISM journal ◽  
1990 ◽  
Vol 44 (1) ◽  
pp. 9-18 ◽  
Author(s):  
Michael G. Sideris

The geoid and its horizontal derivatives, the deflections of the vertical, play an important role in the adjustment of geodetic networks. In the one-dimensional (1D) case, represented typically by networks of orthometric heights, the geoid provides the reference surface for the measurements. In the two-dimensional (2D) adjustment of horizontal control networks, the geoidal undulations N and deflections of the vertical ξ, η are needed for the reduction of the measured quantities onto the reference ellipsoid. In the three-dimensional (3D) adjustment, N and ξ, η are basically required to relate geodetic and astronomic quantities. The paper presents the major gravimetric methods currently used for predicting ξ, η and N, and briefly intercompares them in terms of accuracy, efficiency, and data required. The effects of N, ξ, η on various quantities used in the ID, 2D, and 3D network adjustments are described explicitly for each case and formulas are given for the errors introduced by either neglecting or using erroneous N, ξ, η in the computational procedures.


Sign in / Sign up

Export Citation Format

Share Document