scholarly journals In vitro maturation of porcine oocytes with retinoids improves embryonic development

2008 ◽  
Vol 20 (4) ◽  
pp. 483 ◽  
Author(s):  
C. Almiñana ◽  
M. A. Gil ◽  
C. Cuello ◽  
I. Caballero ◽  
J. Roca ◽  
...  

In the present study, the effects of retinoid metabolite administration during in vitro maturation (IVM) on oocyte maturation, parameters of in vitro fertilisation (IVF) and embryo development were examined. Varying concentrations of 9-cis retinoic acid (RA; 0, 5, 50 and 500 nm; Experiment 1) and all-trans retinol (ROH; 0, 125, 1250 and 12 500 nm; Experiment 2) were included in the maturation medium. Cumulus–oocyte complexes were matured in vitro and inseminated with frozen–thawed spermatozoa. Presumptive zygotes were cultured for 16 h to assess IVF parameters or for 7 days to assess embryo development and quality. In Experiment 1, the oocyte maturation rate to metaphase II was significantly decreased (P < 0.001), with values below 5%, in the presence of the highest concentration of RA (500 nm). However, 5 and 50 nm RA had no effect compared with control. Treatment with 5 nm RA improved the blastocyst development rate (P < 0.001). In Experiment 2, the oocyte maturation rate did not differ between 125 and 1250 nm ROH treatment groups and control. However, treatment with 12 500 nm ROH was deleterious because no matured oocytes were observed following the treatment. The penetration rate was lower in the group treated with 1250 nm ROH compared with the 125 nm ROH-treated and control groups, but the blastocyst formation rate did not differ among the three groups. In conclusion, 5 nm RA in the IVM medium significantly increased the blastocyst formation rate, suggesting that RA may play an important role during IVM.

2015 ◽  
Vol 27 (1) ◽  
pp. 203
Author(s):  
I. Lindgren ◽  
P. Humblot ◽  
D. Laskowski ◽  
Y. Sjunnesson

Dairy cow fertility has decreased during the last decades, and much evidence indicates that metabolic disorders are an important part of this decline. Insulin is a key factor in the metabolic challenge during the transition period that coincides with the oocyte maturation and may therefore have an impact on the early embryo development. The aim of this study was to test the effect of insulin during oocyte maturation on early embryo development by adding insulin during the oocyte maturation in vitro. In this study, abattoir-derived bovine ovaries were used and cumulus-oocyte complexes (n = 991) were in vitro matured for 22 h according to standard protocols. Insulin was added during maturation in vitro as follows: H (10 µg mL–1 of insulin), L (0.1 µg mL–1 of insulin), or Z (0 µg mL–1 of insulin). After maturation, oocytes were removed and fixed in paraformaldehyde before staining. Click-it TUNEL assay (Invitrogen, Stockholm, Sweden) was used for apoptotic staining and DRAQ5 (BioNordika, Stockholm, Sweden) for nuclear staining (n = 132). Cumulus-oocyte complexes were evaluated using laser scanning confocal microscope (Zeiss LSM 510, Zeiss, Oberkochen, Germany). Five levels of scans were used to assess oocyte maturation (MII stage) and apoptosis. Because of incomplete penetration of the TUNEL stain (3–5 layers of cumulus cells), only the outer 2 layers of the cumulus complex were investigated regarding apoptosis. Apoptotic index was calculated as apoptotic cells/total cells visualised. Remaining oocytes were fertilized and cultured in vitro until Day 8. Day 7 and Day 8 blastocyst formation was assessed as well as blastocyst stage and grade. Effect of insulin treatment on variables was analysed by ANOVA following arc sin √p transformation. Post-ANOVA comparisons between H+L group v. Z were performed by using the contrast option under GLM (Scheffé test). Results are presented as least squares means ± s.e. P-values ≤ 0.05 were considered as statistically significant. Insulin treatment during oocyte maturation in vitro had no significant effect on oocyte nuclear maturation or apoptotic index of the cumulus cells (Z: 0.052 ± 0.025, L: 0.039 ± 0.016, H: 0.077 ± 0.044, P > 0.05). No effect was seen on cleavage rates (Z: 0.85 ± 0.02, L: 0.85 ± 0.02, H: 0.89 ± 0.03, P > 0.05), but insulin treatment significantly decreased Day 7 rates from fertilized oocytes (Z: 0.19 ± 0.02, L: 0.14 ± 0.02, H: 0.12 ± 0.02, P < 0.05). This study also showed a significantly retarded developmental stage and decreased grade of blastocysts in insulin-treated groups taken together when compared with the control group (P < 0.05). In this study, no effect of insulin supplementation during in vitro maturation was seen on bovine oocyte maturation and apoptosis of cumulus cells, but blastocyst formation and development were negatively affected. Further studies are needed for understanding the relationship between the addition of insulin during maturation in vitro and impaired blastocyst formation. Insulin is a common supplement in the first phase of the first in vitro maturation medium for pig oocytes and is believed to have a beneficial effect on this species.Funding was received from Stiftelsen Nils Lagerlöfs Fond H12–0051-NLA.


2016 ◽  
Vol 28 (2) ◽  
pp. 237
Author(s):  
S. H. Lee ◽  
H. J. Oh ◽  
G. A. Kim ◽  
M. J. Kim ◽  
Y. B. Choi ◽  
...  

In oestrus stage, canine oocytes surrounded by cumulus cells undergo maturation in oviduct for 3 days after ovulation. We hypothesised that canine cumulus cells (cCC) and canine oviduct cells (cOC) in oestrus stage might affect the maturation of oocyte and embryo development. Therefore, the present study was aimed to compare the effects of cCC and cOC co-culture system on oocyte in vitro maturation and embryo in vitro development. cCC were separated from cumulus‐oocyte complex (COC) in ovary from bitches in oestrus phase. cOC were collected from oviduct flushing of bitches in oestrus phase. Both cCC and cOC were cultured and cryopreserved until use for co-culture. In the first experiment, the effect of co-culture using cCC and cOC on porcine oocyte in vitro maturation (IVM) were investigated. The porcine COC were randomly cultured in different co-culture groups as follows: 1) co-culturing with cCC for 42 h, 2) co-culturing with cOC for 42 h, and 3) culturing in absence of cCC or cOC. After IVM, extrusion of the first polar body was observed under a microscope. In the second experiment, the matured oocytes with the first polar body derived from each group were activated with electrical stimulus. Parthenotes were cultured in porcine zygote medium-5 (PZM-5) for 7 days at 39°C, 5% CO2 and O2 in a humidified atmosphere. The embryo developmental competence was estimated by assessing the in vitro development under microscope. The third experiment was to evaluate the reactive oxygen species (ROS) levels in each supernatant medium obtained from cCC and cOC co-culture group after IVM using a OxiselectTM ROS ELISA Assay kit. Last, analysis of genes (MAPK1/3, SMAD2/3, GDF9 and BMP15) expression in cCC and cOC co-cultured with porcine COC using real-time PCR is in progress. As results, IVM rate of cOC group (91.19 ± 0.45%) was significantly higher than that of cCC and control group (86.50 ± 0.61% and 79.81 ± 0.82%; P < 0.05). Also, cOC groups expressed the highest efficiency in cleavage rate, blastocyst formation rate, and the total cell number in blastocyst (P < 0.05). In ROS levels, cOC group (555 ± 7.77 nM) were significantly lower than cCC and control groups (596.8 ± 8.52 nM and 657.8 ± 11.34 nM). The present study demonstrated that co-culture with cOC improved the in vitro oocyte maturation and the in vitro development rate of porcine embryos. The ROS level decreased in cOC co-culture would have beneficial influence on oocytes maturation. For further study, we will investigate the relation between gene expression related to oocyte maturation and the co-culture results. This research was supported by a global PhD Fellowship Program through NRF funded by the Ministry of Education (NRF-20142A1021187), RDA (#PJ010928032015), IPET (#311011–05–4-SB010, #311062–04–3-SB010), Research Institute for Veterinary Science, and the BK21 plus program.


Author(s):  
Vijay Singh ◽  
A. K. Misra ◽  
Suresh Kumar ◽  
Champak Barman

The objective of the present experiment was to investigate the effect of cysteamine and b-mercaptoethanol supplementation on in -vitro maturation, cleavage of oocytes and development of embryo in buffalo (Bubalus bubalis). Oocytes were aspirated from abattoir ovarian follicles of 3-10 mm diameter followed by maturation in the media in vitro containing cysteamine/b-mercaptoethanol (treatment) and without antioxidant (control). Matured oocytes were co-incubated with sperm (approx.1×106/ml) of Murrah bull in mSOF medium using heparin (10 μg/ml). After 22 h of oocyte-sperm incubation, fertilized oocytes were stripped of cumulus cells and cultured in mSOF medium for 8 days to study embryo development. The oocyte maturation rate improved significantly (P<0.05) following addition of 50 or 100 μM of cysteamine and 10, 50 and 100 μM of b- mercaptoethanol (ME), respectively as compared to control. The cleavage rate was found to be significantly (P<0.05) higher at 50 and 100 μM of cysteamine and at all concentrations of b-mercaptoethanol as compared to control and development of embryos to morula stage was significantly (P<0.05) improved with 50 μM cysteamine/ b-mercaptoethanol.


2021 ◽  
Vol 10 (13) ◽  
pp. 2757
Author(s):  
Xia Hao ◽  
Amandine Anastácio ◽  
Kenny A. Rodriguez-Wallberg

Fertility preservation through ovarian stimulation, aiming at cryopreserving mature oocytes or embryos, is sometimes unsuccessful. This clinical situation deserves novel approaches to overcome infertility following cancer treatment in patients facing highly gonadotoxic treatment. In this controlled experimental study, we investigated the feasibility of in-vitro culturing secondary follicles isolated from superovulated ovaries of mice recently treated with gonadotropins. The follicle yields of superovulated ovaries were 45.9% less than in unstimulated controls. Follicles from superovulated ovaries showed faster growth pace during the initial 7 days of culture and secreted more 17β-estradiol by the end of culture vs controls. Parameters reflecting the outcome of follicular development and oocyte maturation competence in vitro were similar between superovulated and control groups, with a similar follicle size at the end of culture and around 70% survival. Nearly half of cultured follicles met the criteria for in-vitro maturation in both groups and approximately 60% of those achieved a mature MII oocyte, similarly in both groups. Over 60% of obtained MII oocytes displayed normal-looking spindle and chromosome configurations, without significant differences between the groups. Using a validated follicle culture system, we demonstrated the feasibility of secondary follicle isolation, in-vitro culture and oocyte maturation with normal spindle and chromosome configurations obtained from superovulated mice ovaries.


2006 ◽  
Vol 18 (2) ◽  
pp. 119
Author(s):  
H. Bagis ◽  
S. Arat ◽  
H. Odaman ◽  
A. Tas

The objective of this study was to investigate the effects of two parameters on mouse embryo development in vitro. These parameters were the effect of oocyte age on activation and the effect of O2 concentration in culture. In the first experiment, oocytes were recovered from superovutated mice at 15 h (group 1) or 20 h (group 2) after human chorionic gonadotropin (HCG) injection. All oocytes were activated for 6 h with 10 mM Sr2+ in Ca2+ free medium in the presence of 5 �g/mL of cytochalasin B. After activation, embryos were cultured in KSOM.aa medium for 4.5-5.5 days. Zygotes from naturally bred mice were used as control. Differences in blastocyst formation rate and blastocyst cell number among treatments were analyzed by one-way ANOVA after arcsin square transformation. In the first experiment, blastocyst formation rate in the first group was higher than in the second group (62.6% vs. 47.1%; P < 0.05). In addition, blastocyst cell number was also higher in the first group than in the second one (69.4 � 3.2 vs. 52.4 � 2.2; P < 0.05). However, both values were higher in control group (80%, 76.2 � 1.2; P < 0.05) than in the experimental groups. These results showed that young oocytes were activated more effectively than aged oocytes. In the second experiment, mouse zygotes were cultured in a humidified atmosphere of 5% CO2 in air (group 3) or 5% CO2, 5% O2, and 90% N2 (group 4). Blastocyst formation rate and blastocyst cell number of zygotes cultured in low O2 concentration (group 4) for 4.5 days were higher than for group 3 (76.3% vs. 56.4 and 69.0 � 3.4 vs. 52.8 � 2.3; P < 0.05). There was a significant difference in blastocyt formation rate of embryos for 5.5 days between the two groups (25.8% for group 4 vs. 14.4% for group 3; P < 0.05). This suggests that the embryos developed more slowly in high O2 concentration. These results showed that low O2 concentration provided a more suitable environment for mouse embryo development in vitro. The same experiment was repeated with parthenogenetic embryos recently in our laboratory. This study was supported by a grant from TUBITAK, Turkey (VHAG-1022).


2004 ◽  
Vol 16 (2) ◽  
pp. 275
Author(s):  
D. Fischer ◽  
J. Bordignon ◽  
C. Robert ◽  
D. Betts

Environment is crucial for in vitro development of gametes and embryos. The recent progression of culture media towards defined conditions brought to surface the impact of different medium supplements on oocyte and embryo development. In this work we evaluate the effect of various oocyte culture media on bovine oocyte maturation and subsequent embryo development. Bovine cumulus-oocyte complexes were recovered from slaughterhouse ovaries and matured in vitro in either TCM-199 (Gibco) or SOF (Synthetic Oviduct Fluid) media supplemented with BSA (fatty acid-free) or serum (fetal bovine serum). Oocytes from each treatment group were denuded and fixed at 18, 20, 22, 24, 26 and 28h post-maturation (p.m.). Oocyte meiotic progression was monitored in each of the groups (n=28–40 oocytes/group) by immunofluorescence microscopy of chromatin. Oocytes matured in SOF showed a slower rate of meiotic progression when compared to the other groups, with the highest percentage of oocytes reaching the MII stage by 28h p.m. (60.71% SOF-BSA, 71.43% SOF-Serum). The fastest developmental rate was observed in oocytes matured in TCM-serum (77.15% at 24h p.m.) followed by oocytes matured in TCM-BSA (74.29% at 26h p.m.). In order to evaluate the effect of nuclear maturation on chromosome segregation, chromosomal organization of MII oocytes was evaluated by immunofluorescence microscopy within each media group (n=26–31 oocytes/group) at 18, 22 and 26h p.m.. No chromosomal abnormalities were found at 18h p.m.. Both media supplemented with BSA induced lower frequencies of chromosomal abnormalities (0 to 3.23%) and (3.57 to 7.69%) for SOF and TCM, respectively, when compared to their serum-supplemented counterparts (7.14 to 11.54%) and (10 to 10.71%) for SOF and TCM, respectively at 22 and 26h p.m.. Remarkably, the maturation medium and its supplements influenced the speed of blastocyst development. For this experiment, oocytes were matured in TCM-BSA, TCM-Serum, SOF-BSA or SOF-serum, fertilized in vitro in a TALP-base media supplemented with BSA and cultured in SOF-BSA. Blastocyst development was assessed at 7, 8 and 9 days of culture. Cleavage rates were similar between the groups (84–90%), whereas development rates to blastocyst stage varied among treatment groups. Maturation in SOF-BSA induced a delay in blastocyst formation that reached its highest percentage only on day 9 of culture (30.8%); moreover, blastocyst development was carried over until Day 12. When oocytes were matured in the presence of serum, the number of blastocysts did not increase after Day 8 of culture (26.6%, TCM-serum). These results provide evidence of a severe impact of oocyte culture media on the nuclear maturation of oocytes and their subsequent embryonic development after IVF. Moreover, the difference in the rate of oocyte maturation and blastocyst formation emphasizes the necessity for reviewing and adapting current protocols to new systems such as SOF-BSA. [Research funded by NSERC and OMAF of Canada.]


2017 ◽  
Vol 29 (7) ◽  
pp. 1392 ◽  
Author(s):  
Dandan Liu ◽  
Guolong Mo ◽  
Yong Tao ◽  
Hongmei Wang ◽  
X. Johné Liu

Mouse ovaries exhibit a peri-ovulatory rise of ornithine decarboxylase and its product putrescine concurrent with oocyte maturation. Older mice exhibit a deficiency of both the enzyme and putrescine. Peri-ovulatory putrescine supplementation in drinking water increases ovarian putrescine levels, reduces embryo resorption and increases live pups in older mice. However, it is unknown if putrescine acts in the ovaries to improve oocyte maturation. This study examined the impact of putrescine supplementation during oocyte in vitro maturation (IVM) on the developmental potential of aged oocytes. Cumulus–oocyte complexes from 9–12-month-old C57BL/6 mice were subjected to IVM with or without 0.5 mM putrescine, followed by in vitro fertilisation and culture to the blastocyst stage. Putrescine supplementation during IVM did not influence the proportion of oocyte maturation, fertilisation or blastocyst formation, but significantly increased blastocyst cell numbers (44.5 ± 1.9, compared with 36.5 ± 1.9 for control; P = 0.003). The putrescine group also had a significantly higher proportion of blastocysts with top-grade morphology (42.9%, compared with 26.1% for control; P = 0.041) and a greater proportion with octamer-binding transcription factor 4 (OCT4)-positive inner cell mass (38.3%, compared with 19.8% for control; P = 0.005). Therefore, putrescine supplementation during IVM improves egg quality of aged mice, providing proof of principle for possible application in human IVM procedures for older infertile women.


2016 ◽  
Vol 28 (8) ◽  
pp. 1223 ◽  
Author(s):  
K. Schmidt ◽  
A. Clark ◽  
A. Mello ◽  
C. Durfey ◽  
A. Buck ◽  
...  

High incidences of polyspermic penetration continue to challenge researchers during porcine in vitro fertilisation (IVF). The aim of this study was to reduce the incidence of polyspermy by increasing the perivitelline space thickness with glucuronic acid and N-acetyl-D-glucosamine (GlcNAc) supplementation during oocyte maturation. After maturation, zona pellucida and perivitelline space thicknesses, intracellular glutathione concentrations and fertilisation kinetics were measured, in addition to embryonic cleavage and blastocyst formation at 48 h and 144 h after IVF, respectively. There were no significant differences between the treatments for zona pellucida thickness, penetration rates, male pronuclear formation or cortical granule exocytosis. Glucuronic acid supplementation significantly increased (P < 0.05) the perivitelline space thickness and significantly lowered the incidence (P < 0.05) of polyspermy. GlcNAc supplementation significantly increased (P < 0.05) intracellular glutathione concentrations. Supplementation with 0.005 mM glucuronic acid plus 0.005 mM GlcNAc during oocyte maturation produced significantly higher rates (P < 0.05) of cleavage and blastocyst formation by 48 and 144 h after IVF compared with all other groups. These results indicate that supplementing with 0.005 mM glucuronic acid and 0.005 mM GlcNAc during oocyte maturation decreases the incidence of polyspermic penetration by increasing perivitelline space thickness and improving embryo development in pigs.


2012 ◽  
Vol 24 (5) ◽  
pp. 656 ◽  
Author(s):  
Islam M. Saadeldin ◽  
Ok Jae Koo ◽  
Jung Taek Kang ◽  
Dae Kee Kwon ◽  
Sol Ji Park ◽  
...  

Kisspeptin (Kp) is best known as a multifunctional peptide with roles in reproduction, the cardiovascular system and cancer. In the present study the expression of kisspeptin hierarchy elements (KISS1, GNRH1 and LHB) and their receptors (KISS1R, GNRHR and LHCGR, respectively) in porcine ovary and in cumulus–oocyte complexes (COCs) were investigated, as were its effects on the in vitro maturation (IVM) of oocytes and their subsequent ability to sustain preimplantation embryo competence after parthenogenetic electrical activation. Kp system elements were expressed and affected IVM of oocytes when maturation medium was supplemented with 10–6 M Kp. Oocyte maturation, maternal gene expression (MOS, GDF9 and BMP15), blastocyst formation rate, blastocyst hatching and blastocyst total cell count were all significantly increased when oocytes were matured in medium containing Kp compared with the control group (without Kp). A Kp antagonist (p234) at 4 × 10–6 M interfered with this hierarchy but did not influence the threshold effect of gonadotrophins on oocyte maturation. FSH was critical and permissive to Kp action on COCs by increasing the relative expression of KISS1R. In contrast, Kp significantly increased apoptosis, the expression of pro-apoptotic gene, BAK1, and suppressed trophoblast outgrowths from hatched blastocysts cultured on feeder cells. The present study provides the first functional evidence of the Kp hierarchy in porcine COCs and its role in enhancing oocyte maturation and subsequent developmental competence in an autocrine–paracrine manner. However, Kp supplementation may have a harmful impact on cultured hatched blastocysts reflecting systemic or local regulation during the critical early period of embryonic development.


Zygote ◽  
2011 ◽  
Vol 20 (1) ◽  
pp. 27-32 ◽  
Author(s):  
Byung Chul Jee ◽  
Jun Woo Jo ◽  
Jung Ryeol Lee ◽  
Chang Suk Suh ◽  
Seok Hyun Kim ◽  
...  

SummaryWe performed this study to investigate the effect of histone deacetylase inhibition during extended culture of in vitro matured mouse oocytes. In vitro matured mouse (BDF1) oocytes were cultured in vitro for 6, 12, and 24 h, respectively, and then inseminated. During in vitro culture for 6 and 12 h, two doses of trichostatin A (TSA), a histone deacetylase inhibitor, were added (100 nM and 500 nM) to the culture medium and the oocytes were then inseminated. During the 24-h in vitro culture, two doses of TSA were added (100 nM and 500 nM) to the medium and the oocytes were activated with 10 mM SrCl2. After the 6-h culture, the fertilization rate was similar to that of the control group, but the blastocyst formation rate was significantly decreased. After the 12-h culture, both the fertilization and blastocyst formation rates were significantly decreased. After the 24-h culture, total fertilization failure occurred. In the oocytes cultured for 6 and 12 h, the fertilization and blastocyst formation rates did not differ between the TSA-supplemented and control groups. Although extended culture of the mouse oocytes significantly affected their fertilization and embryo development, TSA supplementation did not overcome their decreased developmental potential.


Sign in / Sign up

Export Citation Format

Share Document