212 EFFECT OF CANINE OVIDUCT CELLS AND CUMULUS CELLS CO-CULTURE ON IN VITRO MATURATION OF PORCINE OOCYTES AND EMBRYO DEVELOPMENT

2016 ◽  
Vol 28 (2) ◽  
pp. 237
Author(s):  
S. H. Lee ◽  
H. J. Oh ◽  
G. A. Kim ◽  
M. J. Kim ◽  
Y. B. Choi ◽  
...  

In oestrus stage, canine oocytes surrounded by cumulus cells undergo maturation in oviduct for 3 days after ovulation. We hypothesised that canine cumulus cells (cCC) and canine oviduct cells (cOC) in oestrus stage might affect the maturation of oocyte and embryo development. Therefore, the present study was aimed to compare the effects of cCC and cOC co-culture system on oocyte in vitro maturation and embryo in vitro development. cCC were separated from cumulus‐oocyte complex (COC) in ovary from bitches in oestrus phase. cOC were collected from oviduct flushing of bitches in oestrus phase. Both cCC and cOC were cultured and cryopreserved until use for co-culture. In the first experiment, the effect of co-culture using cCC and cOC on porcine oocyte in vitro maturation (IVM) were investigated. The porcine COC were randomly cultured in different co-culture groups as follows: 1) co-culturing with cCC for 42 h, 2) co-culturing with cOC for 42 h, and 3) culturing in absence of cCC or cOC. After IVM, extrusion of the first polar body was observed under a microscope. In the second experiment, the matured oocytes with the first polar body derived from each group were activated with electrical stimulus. Parthenotes were cultured in porcine zygote medium-5 (PZM-5) for 7 days at 39°C, 5% CO2 and O2 in a humidified atmosphere. The embryo developmental competence was estimated by assessing the in vitro development under microscope. The third experiment was to evaluate the reactive oxygen species (ROS) levels in each supernatant medium obtained from cCC and cOC co-culture group after IVM using a OxiselectTM ROS ELISA Assay kit. Last, analysis of genes (MAPK1/3, SMAD2/3, GDF9 and BMP15) expression in cCC and cOC co-cultured with porcine COC using real-time PCR is in progress. As results, IVM rate of cOC group (91.19 ± 0.45%) was significantly higher than that of cCC and control group (86.50 ± 0.61% and 79.81 ± 0.82%; P < 0.05). Also, cOC groups expressed the highest efficiency in cleavage rate, blastocyst formation rate, and the total cell number in blastocyst (P < 0.05). In ROS levels, cOC group (555 ± 7.77 nM) were significantly lower than cCC and control groups (596.8 ± 8.52 nM and 657.8 ± 11.34 nM). The present study demonstrated that co-culture with cOC improved the in vitro oocyte maturation and the in vitro development rate of porcine embryos. The ROS level decreased in cOC co-culture would have beneficial influence on oocytes maturation. For further study, we will investigate the relation between gene expression related to oocyte maturation and the co-culture results. This research was supported by a global PhD Fellowship Program through NRF funded by the Ministry of Education (NRF-20142A1021187), RDA (#PJ010928032015), IPET (#311011–05–4-SB010, #311062–04–3-SB010), Research Institute for Veterinary Science, and the BK21 plus program.

Animals ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 209 ◽  
Author(s):  
Ling Yang ◽  
Qingkai Wang ◽  
Maosheng Cui ◽  
Qianjun Li ◽  
Shuqin Mu ◽  
...  

Melatonin treatment can improve quality and in vitro development of porcine oocytes, but the mechanism of improving quality and developmental competence is not fully understood. In this study, porcine cumulus–oocyte complexes were cultured in TCM199 medium with non-treated (control), 10−5 M luzindole (melatonin receptor antagonist), 10−5 M melatonin, and melatonin + luzindole during in vitro maturation, and parthenogenetically activated (PA) embryos were treated with nothing (control), or 10−5 M melatonin. Cumulus oophorus expansion, oocyte survival rate, first polar body extrusion rate, mitochondrial distribution, and intracellular levels of reactive oxygen species (ROS) and glutathione of oocytes, and cleavage rate and blastocyst rate of the PA embryos were assessed. In addition, expression of growth differentiation factor 9 (GDF9), tumor protein p53 (P53), BCL2 associated X protein (BAX), catalase (CAT), and bone morphogenetic protein 15 (BMP15) were analyzed by real-time quantitative PCR. The results revealed that melatonin treatment not only improved the first polar body extrusion rate and cumulus expansion of oocytes via melatonin receptors, but also enhanced the rates of cleavage and blastocyst formation of PA embryos. Additionally, melatonin treatment significantly increased intraooplasmic level of glutathione independently of melatonin receptors. Furthermore, melatonin supplementation not only significantly enhanced mitochondrial distribution and relative abundances of BMP15 and CAT mRNA, but also decreased intracellular level of ROS and relative abundances of P53 and BAX mRNA of the oocytes. In conclusion, melatonin enhanced the quality and in vitro development of porcine oocytes, which may be related to antioxidant and anti-apoptotic mechanisms.


2013 ◽  
Vol 25 (1) ◽  
pp. 174
Author(s):  
R. Olivera ◽  
C. Alvarez ◽  
I. Stumpo ◽  
G. Vichera

The time allowed for nuclear reprogramming is considered an essential factor for the efficiency of cloning and has not been evaluated in equine aggregated cloned embryos. The aim of our work was to assess the effect of different timing of activation stimulus after fusion of adult equine fibroblast cells to enucleated equine oocytes on embryo development and embryo quality. We processed a total of 1874 equine ovaries, recovering 3948 oocytes, of which 1914 (48.5%) had extruded the first polar body after 24 h of maturation. Oocyte collection, maturation, and the NT procedure were performed as described by Lagutina et al. (2007 Theriogenology 67, 90–98). Reconstructed oocytes (RO) were activated at 3 different times after cell fusion: (1) 1 h, (2) 1.5 h, and (3) 2 h. Activation was performed using 8.7 µM ionomycin for 4 min, followed by a 4-h culture in a combination of 1 mM DMAP and 5 mg mL–1 of cycloheximide. The RO were cultured in the well of the well system, aggregating 3 RO per well. The RO were cultured in DMEM-F12 with 5% fetal bovine serum (FBS) and antibiotics. Cleavage (48 h after activation), blastocyst, and expanded blastocyst rates (8–9 days) were assessed. In vitro development was compared using the chi-square test (P < 0.05). A total of 1608 RO were cultured. Cleavage was significantly lower in group 3 with respect to the other 2 groups [(1): 396/450, 88%; (2): 540/639, 84.5%; (3): 365/519, 70.3%]. There were no significant differences in blastocyst rates within the 3 groups considering the number of total RO [(1): 19/450, 4.2%; (2): 23/639, 3.6%; (3): 15/519, 2.9%] or aggregated RO per well [(1): 12.7%; (2): 10.8%; (3): 8.7%]. However, the rate of blastocyst expansion was higher (P < 0.05) in group 2 than in group 3 [(1): 17/19, 89.5%; (2): 23/23, 100%; (3): 11/15, 73.3%]. In conclusion, the timing of nuclear reprogramming did not affect blastocyst rates but affected cleavage rates and blastocyst quality. This indicates that 1 h before activation stimulus is enough for embryo development of equine aggregated cloned embryos.


2017 ◽  
Vol 29 (1) ◽  
pp. 192
Author(s):  
P. Ferré ◽  
K. X. Nguyen ◽  
T. Wakai ◽  
H. Funahashi

This experiment was undertaken to assess the meiotic and developmental competences of oocytes derived from different sized follicles and denuded of cumulus cells 0, 20, and 44 h after the start of culture for in vitro maturation (IVM). Groups of 60 oocyte-cumulus complexes from small- (SF; <3 mm) and medium-sized follicles (MF; 3–6 mm) were cultured for IVM in porcine oocyte medium with 50 μM β-mercaptoethanol supplemented with 1 mM dibutyryl-cyclic adenosine monophosphate, 10 IU mL−1 of eCG, and 10 IU mL−1 of hCG for 20 h at 39°C and 5% CO2 in air. Then, after washing, they continued culture in fresh β-mercaptoethanol without dibutyryl-cyclic adenosine monophosphate and gonadotropins under the same conditions for another 24 h. At 0, 20, and 44 h of IVM, cumulus cells were removed with 0.1% (wt/vol) hyaluronidase and the denuded oocytes continued IVM culture following the protocol. Mature oocytes with the first polar body were selected, parthenogenetically activated with a single electrical pulse (DC: 1.2 kV/cm, 30 µs), incubated with 4% (wt/vol) BSA and 5 μM cytochalasin B for 4 h, and cultured in porcine zygote medium for 5 days. Cleavage and blastocyst formation rates were observed on Day 2 and 5, respectively. Blastocysts were stained with 4’,6-diamidino-2-phenylindole for cell count assessment. The experiment was replicated 5 times and analysed with a 1- or 2-way ANOVA. If P < 0.05 in ANOVA, a Tukey multiple comparisons test was performed. Regardless of the time of cumulus cell removal, oocytes from MF had significantly higher in rates of maturation, cleavage, and blastocyst rates, as compared with those from SF, whereas there were no significant differences in the cell number of blastocysts between SF and MF (32 v. 34 cells, respectively). When oocytes were denuded before IVM culture, rates of oocyte maturation (37.6% in SF and 50.8% in MF), and blastocyst formation (2.7% in SF and 27.3% in MF) were significantly lower than controls (51.2% in SF and 76% in MF; 25.8% in SF and 48.5% in MF, respectively). When oocytes were denuded 20 h after the start of IVM, oocyte maturation rates were significantly increased (64.1% in SF and 82.5% in MF) as compared with controls, whereas no significant differences were observed in cleavage and blastocyst formation rates in comparison with controls. These results conclude that removing cumulus cells from oocyte-cumulus complexes 20 h after the start of IVM improves the meiotic competence of oocytes derived from both SF and MF, without any reduction of developmental competence of the oocytes following parthenogenetical activation.


Author(s):  
Ileana Miclea ◽  
Marius Zahan

Abstract: The poor in vitro development of pig oocytes and embryos has been blamed on oxidative stress. We sought to find out if combinations of Trolox (T), a synthetic and cell-permeable derivative of vitamin E, and ascorbic acid (AA) could improve the maturation rates of in vitro cultured pig oocytes. Pig oocytes underwent maturation for 44–45 h in medium M 199 supplemented with 0 μM T + 0 μM AA, 100 μM T + 250 μM AA, 300 μM T + 250 μM AA, 100 μM T + 750 μM AA or 300 μM T + 750 μM AA. These combinations were chosen based on previous research conducted in our laboratory and on the available literature. After maturation, several parameters were assessed: cumulus oophorus expansion, oocyte viability (based on the presence of metabolic activity versus membrane damage), extrusion of the first polar body, mitochondrial membrane potential (MMP), pronucleus formation, and embryo development after fertilization. All antioxidant combinations significantly improved cumulus expansion and formation of the first polar body. The best was 300 μM T + 250 μM AA for the first characteristic and 300 μM T + 750 μM AA for the second. Antioxidant presence in the maturation media increased the percentages of viable oocytes but not significantly. MMP was not significantly modified by the addition of antioxidant combinations. We also found that a low concentration of T (100 µM) mixed with a high concentration of AA (750 µM) in the oocyte maturation media led to significantly higher rates of both female and male pronuclei formation and also enhanced embryo development to the morula stage. Therefore, we recommend this combination to improve the in vitro maturation media of pig oocytes.  


2021 ◽  
Vol 10 (3) ◽  
pp. e15710313074
Author(s):  
Denilsa Pires Fernandes ◽  
Fernanda Araujo dos Santos ◽  
Luã Barbalho de Macêdo ◽  
Roberta Gonçalves Izzo ◽  
Brenna de Sousa Barbosa ◽  
...  

The aim of this study was to evaluate the effect of three different incubation times on in vitro maturation of domestic cat oocytes. Thus, ovaries (n = 42) were submitted to slicing procedure and the oocytes recovered were classified; only good quality oocytes (Grade I and II) underwent in vitro maturation for three different periods (24 vs. 30 vs. 36 h) in supplemented TCM-99 medium. After, oocytes were evaluated for cumulus cell expansion and presence of the first polar body. After six replicates (7 ± 1,7 ovaries per replicate), a total of 334 viable oocytes were recovered. Differences (p <0.05) were observed regarding the percentage of oocytes presenting expansion of the cumulus cells, where higher values were observed in the group of oocytes incubated for 36 h (84.3%), when compared to 30 (73.4%) and 24 h (71.0%). Moreover, differences were also observed regarding the presence of the first polar body (24 h: 29.7%; 30 h: 58.2%; 36 h: 69.8%). We conclude that the incubation period influenced the maturation rates, indicating 36 h as the ideal period for the in vitro maturation of domestic cat oocytes in supplemented TCM-199 medium.


Author(s):  
Adek Amansyah

Objective: To evaluate the relationship between the number of LH receptor and the success of oocyte maturity in the process of in vitro maturation (IVM). Method: This experimental study was conducted in the Permata Hati Infertility Clinical Laboratory, Dr. Sardjito General Hospital, Yogyakarta, with the samples of 300 oocytes obtained through collecting immature cow’s oocytes from the abattoir and grouped the oocytes into 3 (three) groups based on the pattern of oocyte cumulus cells on the vesicle germinal stage 2 - 8 mm with three layers of cumulus cell. The sample of the cumulus cells from these three groups were taken and the LH receptor examination was done with immunohistochemistry. After that, the IVM process was performed to the three groups and its development for 24 hours was evaluated. Its maturation quality was evaluated with the emergence of the first polar body (1PB) and compared to the other groups and related to the number of LH receptor in the three groups. Result: The result of this study indicated that the oocyte cumulus cells showed a difference of function during IVM process. The maturity rate in this study showed that the number of LH receptor was related to the morphological pattern of oocyte cumulus cells with oocyte maturity. The maturity of the cumulus cells which 100% covered the oocyte was higher than that of the cumulus cells which > 50% and < 30% covered the oocytes, namely, 74% compared to 60% and 12%. The result of this study also showed that the average number of LH receptors in the three groups (A, B, and C) was 183.4, 78.8, and 24.0 respectively. A significant difference was found in the three groups (p < 0.0001). When related to IVM maturity, this difference showed that the bigger number of oocyte cumulus cells influenced the oocyte maturity. Conclusion: The number of LH receptor can be used as a prediction to determine the success of oocyte maturation in the process of in vitro maturation. [Indones J Obstet Gynecol 2013; 1-4:183-7] Keywords: IVM, LH receptor, oocyte cumulus cell


2015 ◽  
Vol 27 (1) ◽  
pp. 203
Author(s):  
I. Lindgren ◽  
P. Humblot ◽  
D. Laskowski ◽  
Y. Sjunnesson

Dairy cow fertility has decreased during the last decades, and much evidence indicates that metabolic disorders are an important part of this decline. Insulin is a key factor in the metabolic challenge during the transition period that coincides with the oocyte maturation and may therefore have an impact on the early embryo development. The aim of this study was to test the effect of insulin during oocyte maturation on early embryo development by adding insulin during the oocyte maturation in vitro. In this study, abattoir-derived bovine ovaries were used and cumulus-oocyte complexes (n = 991) were in vitro matured for 22 h according to standard protocols. Insulin was added during maturation in vitro as follows: H (10 µg mL–1 of insulin), L (0.1 µg mL–1 of insulin), or Z (0 µg mL–1 of insulin). After maturation, oocytes were removed and fixed in paraformaldehyde before staining. Click-it TUNEL assay (Invitrogen, Stockholm, Sweden) was used for apoptotic staining and DRAQ5 (BioNordika, Stockholm, Sweden) for nuclear staining (n = 132). Cumulus-oocyte complexes were evaluated using laser scanning confocal microscope (Zeiss LSM 510, Zeiss, Oberkochen, Germany). Five levels of scans were used to assess oocyte maturation (MII stage) and apoptosis. Because of incomplete penetration of the TUNEL stain (3–5 layers of cumulus cells), only the outer 2 layers of the cumulus complex were investigated regarding apoptosis. Apoptotic index was calculated as apoptotic cells/total cells visualised. Remaining oocytes were fertilized and cultured in vitro until Day 8. Day 7 and Day 8 blastocyst formation was assessed as well as blastocyst stage and grade. Effect of insulin treatment on variables was analysed by ANOVA following arc sin √p transformation. Post-ANOVA comparisons between H+L group v. Z were performed by using the contrast option under GLM (Scheffé test). Results are presented as least squares means ± s.e. P-values ≤ 0.05 were considered as statistically significant. Insulin treatment during oocyte maturation in vitro had no significant effect on oocyte nuclear maturation or apoptotic index of the cumulus cells (Z: 0.052 ± 0.025, L: 0.039 ± 0.016, H: 0.077 ± 0.044, P > 0.05). No effect was seen on cleavage rates (Z: 0.85 ± 0.02, L: 0.85 ± 0.02, H: 0.89 ± 0.03, P > 0.05), but insulin treatment significantly decreased Day 7 rates from fertilized oocytes (Z: 0.19 ± 0.02, L: 0.14 ± 0.02, H: 0.12 ± 0.02, P < 0.05). This study also showed a significantly retarded developmental stage and decreased grade of blastocysts in insulin-treated groups taken together when compared with the control group (P < 0.05). In this study, no effect of insulin supplementation during in vitro maturation was seen on bovine oocyte maturation and apoptosis of cumulus cells, but blastocyst formation and development were negatively affected. Further studies are needed for understanding the relationship between the addition of insulin during maturation in vitro and impaired blastocyst formation. Insulin is a common supplement in the first phase of the first in vitro maturation medium for pig oocytes and is believed to have a beneficial effect on this species.Funding was received from Stiftelsen Nils Lagerlöfs Fond H12–0051-NLA.


2006 ◽  
Vol 18 (2) ◽  
pp. 194 ◽  
Author(s):  
A. T. Palasz ◽  
J. Beltrán Breña ◽  
P. De la Fuente ◽  
M. F. Martinez ◽  
A. Gutiérrez-Adán

We have previously shown that bovine embryos cultured in SOFaa (BME + MEM amino acids) culture medium with hyaluronan (HA) + BSA are of better quality (Guti�rrez-Ad�n et al. 2005 Reprod. Fertil. Dev. 17, 219). Our objective was to examine the effect of essential (BME) or non-essential (MEM) amino acids with or without HA (MAP-5; Bioniche, Inc., Belleville, Ontario, Canada) on bovine embryo in vitro development and mRNA transcription of five developmentally important genes; apoptosis (Bax), growth factor (IGF-II), glucose (Glut-1) and fructose (Glut-5) transport and metabolism, and cell to cell adhesion (Cx-43). A total of 1474 presumptive zygotes (5 replicates) were initially cultured in 40 �L drops in the following groups: Group 1, control, SOFaa; Group 2, SOF-1 (MEM only); and Group 3, SOF-2 (BME only). On Day 4 (~96 h post-insemination (pi) the number of zygotes that had developed to d8 cells was recorded and 10 �L of SOF-1 and SOF-2, each with 2.5 mg/mL HA, was added to half of the embryos from Groups 2 and 3, respectively; the other half of Groups 2 and 3 and control group received 10 �L of corresponding medium without HA. Embryos were cultured under paraffin oil at 39�C and 5% CO2 in humidified air. Cleavage rates were recorded on Day 2 and the number of blastocysts on Days 7, 8, and 9. Five blastocysts from each replicate from each treatment were frozen for determination of gene expression patterns later. Cleavage rates and embryo development 96 h pi were compared among groups by chi-square analysis. The effects of HA and medium on blastocyst rates were analyzed by logistic regression and the data on mRNA expression by one-way repeated-measures ANOVA. Cleavage rates were 81.1% in SOFaa and 79.3% in SOF-1 (P = 0.48) and different from those in the SOF-2 group (72.4%; P < 0.02). The proportion of embryos that developed to d8 cells at Day 4 was higher in the control (46.7%) and SOF-1 (46.8%) groups than in the SOF-2 group (32.6%). The number of blastocysts that developed in SOFaa (37.0%), SOF-1 (37.7%), and SOF-1 + HA (37.8%) were higher (P < 0.001) than those in SOF-2 (19.6%) and SOF-2 + HA (21.8%). The level of expression of Glut-5 was not different among the groups. However, SOF-2 was the only group that had significantly lower expression of Glut-5, Igf II, and Cx43, and higher expression of BAX (P < 0.05) as compared to the control group and the SOF-1 groups with or without HA. Addition of HA to SOF-2 medium increased expression of Glut-1 and Igf II and decreased expression of BAX as compared to the SOF-1 only and control groups and the SOF-2 groups with or without HA (P < 0.05). The level of expression of Cx43 was higher in the control than in four remaining groups, and lower in the SOF-2 than in the SOF-1 group (P < 0.05). Addition of HA increased expression of Cx43 in both SOF-1 and SOF-2 groups but this level of expression was lower than in the control group; the level in the SOF-2 + HA group was lower (P < 0.05) than in the SOF-1 + HA group. We conclude that, within our protocol, MEM amino acids only stimulate embryo development to the blastocyst stage and the addition of HA to the SOF-MEM and SOF-BME media on Day 4 of culture improved embryo quality.


2011 ◽  
Vol 23 (1) ◽  
pp. 229
Author(s):  
M. J. Izquierdo-Rico ◽  
R. Romar ◽  
C. Kohata ◽  
H. Funahashi

Oocyte-specific transcripts play important roles in oocyte maturation, fertilization, and early embryonic development. Currently, oocytes from medium-size follicles have been used for different assisted reproductive techniques after in vitro maturation (IVM). The aim of this study was to compare the mRNA expression level in porcine oocytes collected from medium (3–6 mm) and small (<2 mm) size follicles. Genes were selected based on their described maternal effect (NALP9, HSF1), their identification as markers of oocyte maturation (AURK-A, AURK-B, MOS, and C-mos), their involvement in fertilization (ZP3, ZP4), and anti-apoptotic effect (Bcl-2). All transcripts were studied in oocytes just after collection [germinal vesicle (GV) stage] and after in vitro maturation (IVM; metaphase II stage). To ensure nuclear stage of immature oocytes, oocytes were mechanically denuded just after collection, centrifuged (10 000 rpm, 5 min, RT), and observed under the microscope (60×). Those oocytes with clear nucleolus and evident nuclear membrane were selected and stored (n = 10) until study. For metaphase II oocytes, only those exhibiting the extrusion of first polar body after IVM (n = 10) were selected. Total RNA was extracted from the pool of 10 immature and mature oocytes. One picogram of luciferase mRNA per oocyte was added as an exogenous standard. Total RNA was extracted from oocytes and cDNA was obtained and used as a template for quantitative PCR to analyse the level of different transcripts. The whole process was replicated 4 times. Data were normalized to the luciferase RNA and analysed by one-way ANOVA with maturational stage (GV or metaphase II) and follicle size (small or medium) as fixed factors. Results show that all transcripts were significantly decreased during IVM (P < 0.05). Therefore, after IVM, NALP9, AURK-A, MOS, C-mos, ZP3, ZP4, and Bcl-2 transcripts were significantly reduced in matured oocytes compared with immature ones irrespective of follicle diameter. Transcripts of AURKAB and HSF1 decreased after IVM in oocytes from medium follicles or small follicles, respectively. A significant effect of follicular size was only detected in MOS transcripts in GV-stage oocytes because those collected from middle follicles had a higher amount than the ones from small follicles (Table 1). These results suggest that the variations in the maternal store of RNA during IVM are not related with follicle diameter for the studied genes. Further investigations are necessary to determinate the developmental competence of oocytes that came from different types of follicles (small and medium follicles). Table 1.Variation of transcripts during in vitro maturation in porcine oocytes collected from small and medium follicles This study was supported by Okayama University. R. Romar was given a grant by JSPS (Ref. S-09210).


Sign in / Sign up

Export Citation Format

Share Document